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Abstract

Dynamic development of computer science stands behind an increase in demand for the various

services provided via cloud computing. Problem is, many customers want to use the same services at

the same time. This compels cloud service providers to improve task scheduling in order to achieve

the desired quality and pace of the services, in accordance with the provisions of the Service Level

Agreements. The aim of task scheduling is to create a precise schedule according to which tasks will

be executed on the particular resource at the determined time. Cloud service providers must take into

account the specific requirements of their end clients that are inevitably connected with the quality of

results and, therefore, with the performance of the implemented task scheduling systems. However,

scheduling is hardly limited to minimising costs and maximising efficiency because it also affects

aspects related to security. The importance of the above issues in modern IT systems require innova-

tive solutions and constant improvements. Thus, a new approach to finding the optimal schedule was

proposed, based on blockchain technology and called Secure Blockchain Scheduler.

Blockchain operation consists in maintaining a joint and collective ledger of records in a digital

form, distributed over the network, in the same copies. A key aspect in blockchain network is to

determine which user can publish records, and this requires the implementation of a consensus model.

In this dissertation, a consensus called Proof of Schedule was proposed. Based on Stackelberg game, it

regulates checking and adding new blocks to the blockchain and determines how to validate schedules

stored in transactions. Such an approach must result in the competition between different schedule

providers, won by the one who takes account of the client’s requirements faster and prepares an

optimal schedule to meet them.

Security issues are unavoidable during the preparation of any schedule. Their ever-changing na-

ture requires special attention and continuous improvement. To examine whether the proposed solu-

tion is safe, the security level of the schedule was defined whose value depends on three probabilities:

probability of machine failure during tasks execution due to high security restrictions, probability of

sending a false or incorrect schedule by the scheduler and probability of an unauthorized manipulation

or modification of the prepared schedule.

As a part of the dissertation, the Blockchain Secure Cloud Scheduler Simulator was implemented

in which the proposed consensus algorithm was used. The application of the simulator included

conducting comparative simulations to evaluate the properties of the proposed blockchain scheduler

against some competitive scheduling modules. The results demonstrate that the blockchain scheduler

significantly improved the efficiency and security of the prepared schedules. The proposed approach

extends the possibilities of using different scheduling modules by the end-users. By delegating the

preparation of the schedules, providers can get benefits only for that, without having to execute tasks

from customers.
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Streszczenie

Dynamiczny rozwój dziedziny informatyki skutkuje ciągłym wzrostem popytu na różne usługi

świadczone przez chmury obliczeniowe. Zapotrzebowanie to rodzi różnego rodzaju problemy,

zwłaszcza gdy wielu klientów chce korzystać z tych samych usług w tym samym czasie. Sytuacja

ta zmusza dostawców do skupienia sie na odpowiednim harmonogramowaniu zlecanych zadań w

celu osiągnięcia pożądanej jakości i tempa świadczenia usług, zgodnie z umowami określającymi

gwarantowany poziom ich świadczenia. Celem szeregowania zadań w chmurach obliczeniowych jest

stworzenie dokładnego harmonogramu, zgodnie z którym zadania będą wykonywane na określonym

zasobie w danym czasie. Dostawcy usług muszą brać pod uwagę szczególne wymagania swoich

klientów, które są związane przede wszystkim z jakością otrzymywanych wyników i minimaliza-

cją kosztów. Harmonogramowanie zadań w chmurach obliczeniowych nie ogranicza się jednak tylko

do tych czynników, bardzo ważne są również aspekty związane z bezpieczeństwem. Znaczenie tych

zagadnień w nowoczesnych systemach IT wymaga innowacyjnych rozwiązań i ciągłych ulepszeń,

dlatego w ramach tej rozprawy doktorskiej zaproponowane zostało nowe podejście do znajdowa-

nia optymalnego harmonogramu zgodnie z którym świadczone będą usługi. Rozwiązanie to zostało

nazwane Secure Blockchain Scheduler i jest oparte na technologii bockchain.

Blockchain jest to zdecentralizowana księga rekordów przechowywana w formie cyfrowej, dys-

trybuowana przez sieć w tych samych kopiach. Kluczowym aspektem w sieci blockchain jest ustal-

enie, który użytkownik może publikować nowe rekordy, co wymaga wdrożenia modelu konsensusu.

W ramach rozprawy zaproponowano algorytm Proof of Schedule, oparty na grze Stackelberga. Kon-

sensus ten reguluje dodawanie nowych bloków do księgi i określa sposób walidacji harmonogramów

zapisanych w transakcjach. Podejście to wymusza konkurencyjność pomiędzy różnymi dostawcami

harmonogramów. Wygrywa ten, który uwzględniając wymagania klienta najszybciej przygotuje op-

tymalny i bezpieczny harmonogram.

Kwestie bezpieczeństwa podczas przygotowywania harmonogramu i ciągle zmieniające się

normy z tym związane również wymagają szczególnej uwagi i doskonalenia. W celu weryfikacji czy

zaproponowany harmonogram spełnia odpowiednie wymogi w tym zakresie zdefiniowano poziom

bezpieczeństwa harmonogramu jako security level. Na wartość security level wpływają trzy czyn-

niki: prawdopodobieństwo awarii maszyny podczas wykonywania zadań, prawdopoobieństwa wysła-

nia przez moduł harmonogramujący fałszywego lub niepoprawnego harmonogramu oraz praw-

dopodobieństwo nieautoryzowanej modyfikacji przygotowanego harmonogramu.

W ramach rozprawy zaimplementowano symulator Blockchain Secure Cloud Scheduler, w

którym wykorzystano zaproponowany algorytm konsensusu. Symulator został wykorzystany do

przeprowadzenia eksperymentów porównawczych. Zwracane przez niego wyniki są optymalne i
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spełniają założone wymogi bezpieczeństwa, a na tle wyników zwracanych przez inne moduły har-

monogramujące wypadają najlepiej. Delegowanie samego przygotowania harmonogramów pozwala

na czerpanie korzyści finansowych przez dostawców za sam harmonogram bez konieczności jego

wykonywania. Rozszerza to znacznie możliwości wykorzystania dostępnych na rynku modułów har-

monogramujących zadania przez użytkowników końcowych.
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Chapter 1

Introduction

This chapter introduces the main topics of the research provided in the dissertation, cloud computing

essentials and motivation of work. The scheduling problems in computational cloud were defined

here and the main research hypothesis verified in the dissertation was formulated. The chapter ends

with a short description of the organisation of the thesis and contents of the chapters.

1.1. Task scheduling in cloud computing

Dynamic development of the research in computer science leads to an increase in demand for

computational resources such as computational and data servers, warehouses, databases, networks or

services dedicated to data analysis and exploration. Cloud computing paradigm has been addressed as

a methodology and computing services and architecture to manage with these challenges. The term

’cloud computing’ is very general nowadays. The classical definition of ’cloud computing’ (CC) is

proposed by Buyya et al. [1]. They defined CC as an extension of the grid infrastructure consisting

of data centres, where the capabilities of business applications are provided as services that can be

accessed through the network. Cloud service providers receive profits for enabling their customers to

access such services. On the other hand, consumers are motivated by the reduction of the related costs.

Cloud computing is not a completely new model or paradigm but rather an evolution of previously

developed models and technologies, such as:

– Computational Grid [2] - a system model composed of many connected computers in the dis-

tributed clusters [1] that cooperate in a large-scale network, which ensures multiplication of

computing power and reliability of such a solution,

– Virtualization - an approach that allows the virtualization of the available resources in such a

way that many computing units are visible as one large computing unit. There is no need in

the grid to overhaul the hardware infrastructure to obtain more computing power, and both the
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infrastructure and computing power are optimally used. There are many software tools that

allow virtualizing machines, for instance: VMware, KVM, Xen [3] or OpenStack Platform [4]

which is a more recent and innovative solution. Computational Grid may refer to the hardware

resources as well as to the data layer that provides a simpler interface and methods for accessing

data. There can be many sources of data, but the user who relies on this data will see one abstract

layer [5],

– Utility Computing Network[6] - a model for providing specific resources on-demand and esti-

mating fees based on their consumption,

– Service-Oriented Architecture (SOA) [7] - an approach to software development in which the

main focus is on the defined services that meet the user’s requirements.

The world-leading cloud providers such as Google, Microsoft or Amazon, initially used clouds in

running their internal business operations. However, after the building of large data centres and data

servers farms in many countries [8], [9], they noticed a broader potential of the solution and started

offering the external enterprises the previously unused resources or services such as data storage or

data processing. There are various methods of classification of the cloud environments. Based on the

access to the cloud services and resources, we may classify clouds into the following three categories:

– public clouds - externally available services everyone can use for a fee depending on the appli-

cation,

– private clouds - based on the infrastructure supporting only one entity; they are typically used by

the companies processing sensitive data they do not want to send outside their internal systems,

– hybrid clouds - where processing and storage tasks are partially performed by the public cloud,

and partially by private systems.

The most popular model of the cloud environment defines CC as a multilayer system [10], where the

following layer-stack can be specified:

– Infrastructure as a Service (IaaS) - the bottom layer of the system, it provides the client with IT

infrastructure such as software, hardware or servicing,

– Platform as a Service (PaaS) - the middle layer, it provides ready-to-use and customized appli-

cations without the need to purchase hardware or software licenses,

– Software as a Service (SaaS) - the upper layer, it provides users with specific software features,

such as e-mail access or calendar.
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Services dedicated to meeting the different needs of their end-users may be crucial for the business

operations of the consumers. Therefore it is necessary to guarantee the appropriate level of their

provision, which is usually regulated through the Service Level Agreement (SLA) [11] brokered

between the providers and consumers. As many clients may want to use the same services at the

same time, the providers must schedule tasks to achieve the desired quality and pace of service, in

accordance with the provisions of the SLA. On the other hand, from the perspective of the providers,

it is important to minimize the maintenance costs by shutting down resources where the currently

unused services are running. To do it quickly, proper scheduling of tasks is necessary.

1.2. Scheduling problems in computational clouds

A basic task scheduling model is shown in Fig. 1.1. In the figure, clients directing requests to the

cloud can be seen. The requests are collected by the cloud broker (task scheduler) responsible for

decomposing requests for smaller tasks and directing them to virtual machines. After the tasks are

executed, the results are returned to the broker who subsequently passes them to the cloud client.

Cloud Broker (Task Scheduler)

Resources (n)Resources (n) Resources (n)

Hypervisor host Hypervisor host Hypervisor host

Cloud user Cloud user Cloud user Cloud user

Fig. 1.1. Basic task scheduling process in cloud computing [12]

The aim of task scheduling is to build a schedule that determines when to execute each task and which

resources should be selected to do it. For instance, tasks must be scheduled when there is a need to

execute a number of calculations provided by the users and deliver the results within a certain time.

To ensure a guaranteed Quality of Service (QoS) [13] to the clients, it is necessary to make as efficient
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mapping of tasks to the given resources as possible; otherwise, the clients will not pay for them. The

task scheduling is, therefore, considered as one of the burning issues to tackle in cloud computing

systems.

1.2.1. Types of scheduling problems and metaheuristics used to solve them

Task scheduling in computational clouds is a very complex problem. In fact, it is a set of prob-

lems and definition of the concrete problem may be formulated based on various cloud scheduling

attributes, namely:

– the environment (static or dynamic),

– cloud architecture (centralized, decentralized or hierarchical),

– task processing policy (immediate or batch),

– tasks’ interrelations (independency or dependency).

Karatza et al. [14] defined the following instances of the cloud scheduling problems:

– bag-of-tasks scheduling - jobs consisting of independent tasks that can be processed in parallel,

– gang scheduling - jobs consisting of tasks that often communicate with one another, which can

be processed in parallel,

– Directed Acyclic Graph (DAG) scheduling [15] - jobs consisting of tasks with a significant

order of execution (workflow); tasks can be planned on different system nodes,

– real-time scheduling - composed of jobs in which the deadlines for executing tasks are defined,

– fault-tolerant scheduling - jobs in which there is a high probability of software failures that may

prevent the execution of the schedule.

Annette et al. [16] use a simpler classification and distinguish between dependent and independent

tasks that can be defined as follows:

– dependent tasks - tasks that must be executed in a certain order; some of them need the results

calculated by other tasks,

– independent tasks - tasks that are not mutually dependent and there is no need to execute them

in the defined order.

In general, the problem of mapping tasks on largely extensive computational resources in the

cloud is one of the problems referred to as NP-hard problems [17]. It is very difficult to provide the
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optimal solution in polynomial time for this category of problems. However, there are some meta-

heuristic [18] algorithms that can provide sub-optimal solutions to this type of problem. Among these

techniques are for instance [19]:

– QoS-based task scheduling algorithms - the schedule is evaluated with regard to the various

criteria pertaining to the Quality of Service parameters,

– Ant Colony Optimization - algorithms based on arbitrary searches using positive criticism sys-

tem and imitating the behaviour of real ant colonies in nature,

– Genetic Algorithm (GA) based task scheduling - algorithms based on genetic algorithms and

neural networks,

– Particle Swarm Optimization (PSO)- algorithms based on population behaviour and quite pop-

ular due to the ease, adequacy and wide range of their use,

– Fuzzy-based task scheduling - based on fuzzy algorithms.

1.2.2. Scheduling criteria

There are many algorithms dedicated to task scheduling, each of them evaluated according to

multiple criteria. These criteria may be desirable either for the client or for the provider. Most of them

are defined as optimizing criteria, but the constraints and conditions referring to the security issues

are also included. Fig. 1.2 presents an example of a schedule arranged for 14 tasks where 3 machines

are available for their execution; the example will be evaluated using some different criteria.

Resource 1

Resource 2

Resource 3

0 1 2 3TIME (s)

T1

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11 T12

T13

T14

Fig. 1.2. Example of schedule

Optimization criteria are related to the optimization of the schedule in order to execute it faster and

cheaper for the clients or to do the individual tasks at a predetermined time. Some of the criteria for

task scheduling methods, are listed below:

1. Makespan - the time of finishing the last task from the batch; the smaller the makespan is, the

faster the tasks are completed:

makespan = max{ETi, ETi+1, ..., ETn} (1.1)
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6 1.2. Scheduling problems in computational clouds

where

ETi – the ending time of the task i

n – number of tasks in the batch

Makespan for the schedule from Fig. 1.2 is 19 s (ending time of task number 14).

2. Flowtime - the sum of the ending times of all tasks from the batch; this metric describes the

response time to the client for the submitted task, and its minimization means a reduction in the

average response time of the entire schedule:

flowtime =

n∑
i=1

ETi (1.2)

where

ETi – the ending time of the task i

n – number of tasks in the batch

Flowtime for the schedule from Fig. 1.2 is:

ET1 + ET2 + ... + ET13 + ET14 = 3 + 3 + 4 + 5 + 8 + 6 + 10 + 9 + 13 + 17 + 14 + 16 + 18 +

19 = 139 s

3. Economic cost - the total sum the client has to pay to the provider for the resource utilization

Economic Cost =

m∑
i=1

(Ci ∗ Ti) (1.3)

where

Ci – the cost of 1 second of utilization the resource i

Ti – time in which the resource i is utilized

m – number of resources

Assuming that the cost per 1 second of utilization is equal to: Resource 1 = 100, Resource 2 =

150, Resource 3 = 200, the economic cost for the schedule from Fig. 1.2 is:

100 * 17 + 150 * 19 + 200 * 18 = 8150

4. Resource utilization - maximizing the utilization of the resources, this metric is very important

for the provider whose profit raises with the reduction of time gaps when the machine is not

utilized:

Resource Utilization =

∑m
i=1 TRi

makespan ∗m
(1.4)

where
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1.3. Research goals and motivation 7

TRi – the time of completion of all the tasks by the resource i

m – number of resources

Resource utilization for the schedule from Fig. 1.2 is:

(17 + 19 + 18) / 19 * 3 = 0.95

5. Deadline constraint - defines the time limit within which the task or batch must be executed.

Apart from that, there are many other criteria, described in detail by Kalra et al. [17]. These are, for in-

stance, tardiness, waiting time, turnaround time, fairness, throughput, priority constraint, dependency

constraint, budget constraint etc.

1.3. Research goals and motivation

Task scheduling is indispensable to every distributed system. It allows for the appropriate use

of the available resources and is usually a key element in the functioning of cloud computing. In

the earlier sections, I briefly discussed the types of scheduling problems, metaheuristics dedicated to

solving them, and the methods of their evaluation. These three facets of the issue set out the basic

goals and challenges faced by the scheduling modules. In other words, the question remains how to

assure the clients that their tasks are executed with due diligence and according to their expectations,

sometimes within a specified time limit. By formulating the requirements and directing them to the

cloud, customers demand high-quality results and safety for the smallest possible fee. Cloud providers

are, therefore, compelled to improve the performance of task scheduling systems and the quality of

results. At the same time, they must take into account the specific requirements of their clients, such

as execution or storage of tasks in the specific geographic locations or protecting them from the

unauthorized publication. However, scheduling is not limited to minimizing costs and maximizing

efficiency of schedulers. It also concerns such aspects as security, minimizing energy consumption or

deadlines for completing tasks. All these challenges clearly show the importance of task scheduling

in modern computational clouds and growing demand for innovative solutions and improvements.

Taking into consideration all the problems raised above, one can state that there is much space for

improvement in CC. Moreover, the emerging issues may be solved by virtue of the increasingly popu-

lar blockchain technology. Blockchain (BC) is a decentralized computer network, devoid of a central

management unit, which is used to store and send information about the transactions concluded on

the internet [20]. The essence of the blockchain operation is to maintain a joint and collective ledger

of records in a digital form, distributed over the network, in the same copies. This technology can be

used in various transactions, e.g, in trade, in the electricity market or as a virtual currency. Its main

advantage is the possibility of confirming transactions without the agency or involvement of public

trust institutions. Since the transactions stored in blockchain are irreversible, at the currently available
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technology and computing power of units they are very resistant to nefarious modifications. It is esti-

mated that breaking a blockchain network would require computing power equal to half the internet.

As such, BC can play a huge role in economics and contribute to the development of the economy.

However, its potential can also be used more directly: to enhance the selection of the best schedules

for the particular clients and to increase security in the systems they use.

1.4. Research hypothesis and contributions

The following research hypothesis is formulated in this thesis:

"Blockchain-based cloud schedulers are efficient security-aware methods of planning the mapping

the tasks into the cloud resources with respect to the end-users requirements."

Modern scheduling systems in CC focus on the reduction of the time of scheduling and, conse-

quently, clients’ costs. Nowadays, customers have also requirements related to the security issues,

performance of their tasks, and the quality of results they receive. Sometimes they want their tasks

to be executed with a machine located in a specific place. It is, of course, challenging for service

providers to meet such requirements. In order to verify the defined research hypothesis, in this thesis,

a new model of security-aware cloud scheduler that allows to fulfil the cloud end-users requirements

and be beneficial for the cloud service and resource providers was defined. The model is based on

blockchain technology [20] and Stackelberg games [21] described in more detail in Chapters 4 and 5.

The original research contributions of the thesis include:

– definition of a new taxonomy of the cloud scheduling (Section 2.1),

– definition of a new ’security level’ scheduling criterion (Section 3.3),

– development of a new original blockchain-based scheduler (Section 6.1),

– definition of a new algorithm Proof of Schedule, based on Stackelberg game, dedicated to estab-

lishing a consensus in the blockchain-based cloud network used for execution of the schedules

(Section 6.2),

– development and implementation of a new Blockchain Secure Cloud Scheduler Simulator -

a tool for conducting experiments and comparing the proposed solution with other available

scheduling modules (Section 6.3).

The research conducted in this dissertation significantly contributes to the development of the area

related to the topic of task scheduling in distributed computational clouds, in particular to all aspects

related to the security of schedules.
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1.5. The structure of the dissertation

The dissertation is organized as follows. Chapter 1 contains a description of the importance of

task scheduling in cloud computing and the related problems to solve, being the direct motivation for

picking up the topic of the thesis.

Chapter 2 provides an overview of the scholarly literature considering the problems related to task

scheduling in computational clouds. The particular approaches are compared with each other, taking

into account the aspects that are most crucial during the evaluation of schedules. Subsequently, the

topic of the dissertation is placed in the considered research area.

Chapter 3 provides the characteristics of virtual machines and tasks and specifies how to obtain

them (Section 3.2). Section 3.3 defines a new security-related criterion for the schedule evaluation

called ’security level’. The following sections directly concern the central problem considered in the

dissertation and comprise the criteria relevant to the evaluation of the proposed solution, together with

the adopted restrictions.

Chapter 4 comprises a general description of blockchain technology, including such aspects as: the

types of BC network, its architecture and the resulting advantages, models of consensus achievement

in the networks, and the security that BC technology guarantees.

Chapter 5 is an introduction to Stackelberg games. First of all, the key concepts related to game

theory (such as player, strategy, payoff, and equilibrium) are described and the types of games briefly

characterized. Then, the Stackelberg game and its special variation used in the dissertation to solve

the particular problem are defined.

The proposed solution in the form of the Secure Blockchain Scheduler is discussed in Chapter 6.

The presentation of the system model based on blockchain technology is followed by the method for

determining consensus on the network, called ’Proof of Schedule’ (Section 6.2). The individual parts

of the implemented simulator used to conduct the experiments are described at the end of the chapter

(Section 6.3).

The results of the experiments are presented and discussed in Chapter 7. The initial section (Sec-

tion 7.1) contains the tests of Stackelberg game mechanism conducted on various input datasets. Then,

taking into consideration the adopted assumptions, each stage in the implemented Blockchain Secure

Cloud Scheduler Simulator is checked, which includes the creation of the genesis block, the creation

and confirmation of transactions, and adding transactions to the block and block to the blockchain

(Section 7.2). Finally, in Section 7.3, the results from the proposed Secure Blockchain Scheduler are

compared with the results obtained from 4 other known schedulers.

The thesis is summarized in Chapter 8 along with a short discussion on the perspectives of further

research in the domain.
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Chapter 2

State of the Art in Cloud Scheduling

In this chapter, the state-of-the-art in cloud scheduling was surveyed. A new taxonomy of the cloud

scheduling was defined as the result of the provided comprehensive comparison analysis of the se-

lected schedulers. That taxonomy is extended in the further sections by the definition of the novel

blockchain-based scheduler, which efficiency is justified in the experimental analysis in Chapter 7.

2.1. Taxonomy of the cloud schedulers

In recent years, many methods for task scheduling have been proposed. There is a lot of scholarly

papers relevant to task scheduling in CC, there are also different taxonomy classification according

to which cloud schedulers are classified. Rodriguez and Buyya in [22] identify taxonomy, according

to which the scheduling model is studied based on the four features, namely: (i) task-VM mapping

dynamicity, (ii) resource provisioning strategy, (iii) scheduling objectives and (iv) optimization strat-

egy. To conduct the analysis of state of the art, new taxonomy for cloud schedulers based on two

criteria optimality and security have been proposed. These criteria have been chosen because they are

important to end-users and schedule providers, but they do not always have to be met. According to

the proposed taxonomy, cloud schedulers can be divided into:

– most popular schedulers, with particular emphasis on the optimization of the execution time of

schedule,

– schedulers based on blockchain technology, with particular emphasis on the security-related

aspects of schedule.

Each article selected for discussion was evaluated according to the following criteria:

– measures - measures used to evaluate the efficiency or performance of the proposed algorithms,

– security - safety related to preparing schedule and task processing,



12 2.1. Taxonomy of the cloud schedulers

– specific requirements of clients - taking into account the individual conditions of end users,

such as a deadline or low price,

– purpose - the purpose or reason for applying a given approach, for instance, to optimize costs

for the client.

The first step was to analyze research in which the main focus was on optimizing the time of schedule,

then articles where attention was also paid to security issues, at the end approaches where blockchain

technology was used.

Pandey et al. in [23] discussed the topic of scheduling in applications (software) delivered as

services. These services are usually provided as a subscription in the pay-as-you-go model in which

the client must pay for the usage time. Thus, keeping costs low depends on some objective factors:

minimization of the cost of execution, load balancing of the utilized resources, or minimization of

execution time. The study included a solution to minimize the total cost of application execution in

the resources provided by Amazon and GoGrid using PSO method. In addition to the optimization

of the execution time as such, the authors also took into account the costs resulting from the transfer

of data between the resources. In the experimental part, they showed that PSO-based algorithm could

achieve three times cost savings as compared to existing ’Best Resource Selection’ algorithm based

on minimum execution time, selecting the resource with the maximum cost. The evaluation of the

proposed approach is as follows:

• measures - cost of completing the application;

• security - not considered;

• specific clients requirements - not considered;

• purpose/reason - optimization of costs incurred by the client.

Zhang et al. [24] raised the problem of the increasing number of cloud computing users and

their servicing by single providers. They referred to the idea of inter-cloud [25] and the fact that

single providers have limited resources: if they are completely used, it is necessary to borrow the

services/resources from other cloud providers. Zhang et al. focused on task scheduling across the

clouds, see Fig. 2.1. They proposed the expansion of the genetic algorithm for scheduling independent

tasks by adapting the Gene Space Balance Strategy, which optimizes the generation of the initial

population. They took into account the influence of distance on the completion time of the tasks and

the cost of their execution, and adjusted the scheduling target according to different QoS requirement

of clients. In the simulation part, they presented a comparison between the results of inter-cloud

scheduling and single cloud scheduling, for the various number of tasks. It turned out that the result of

planning for inter clouds was neither the best nor the worst. The evaluation of the proposed approach

is as follows:
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• measures - cost and completion time;

• security - not considered;

• specific clients requirements - QoS;

• purpose/reason - limited resources of a single provider.

Sub-cloud 1
Sub-cloud 2

Sub-cloud 3

Resource Pool

Inter Cloud Control Layer

Resource
Scheduling Module

Resource 
Directory Inter-cloud Control Center

(Cloud coordinator)
User

Fig. 2.1. Inter-cloud task scheduling architecture proposed by Zhang et al. [24]

Jalaparti et al. [26] have studied a model taking into account the interaction between cloud clients

and efficiency when using the cloud. They revealed that despite the isolation of virtualization provided

by virtualization techniques, complex interactions could occur between clients sharing the same cloud

resources, and therefore the client’s job could take more or less time dependent on how much the

cloud was loaded. Subsequently, they proposed a model, based on existing theoretical game models,

that records various aspects of cloud computing such as prices, resource requests from customers,

interactions between clients’ tasks and interaction between clients and cloud providers. As a solution,

they defined a new class of games called Cloud Resource Allocation Games (CRAG). In CRAG, the

problem of resource allocation in clouds is tantamount to a classic non-cooperative game, where cloud

clients (players) selfishly try to maximize their utility. In the experimental part, some simulations were

made to investigate how various Nash and Stackelberg equilibria [21] work in practice. Additionally,

a comparison with a solution not based on the theory of games (Round Robin) was provided. The

results showed that the proposed methods were effective. Compared to the values obtained for the

Nash and Stackelberg equilibria, the turnaround time in the case of the Round-Robin approach was

between 15% and 500% worse . A similar solution related to the optimization of resources using
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Stackelberg games was proposed by Jakóbik and me in Jakóbik et al. [27] where some security issues

were also considered. The evaluation of the proposed approach is as follows:

• measures - total cost to the system, the maximum cost of a machine and maximum turnaround

time;

• security - not considered;

• specific clients requirements - not considered;

• purpose/reason - taking into account the interaction between users in the cloud and minimiza-

tion of costs.

The next approach for task scheduling was described in Garg et al.[28], where a novel mecha-

nism for task scheduling in grids was presented. The authors applied the principles of the auction to

properly allocate resources to parallel applications, taking into account also the specific requirements

of end users. Apart from satisfying QoS requirements of the users, their main goal was to ensure the

maximum use of resources and to minimize the impact on waiting time and slowdown. The meta-

heuristics they proposed, called Double Auction-inspired Meta-scheduling, is a sequence of three

stages: collection, valuation and matching. The first stage is responsible for gathering information

about the resources and applications, for instance, QoS requirements. Second of all, the valuation

is calculated for all applications. Finally, the application is adjusted to the resources based on the

previously prepared valuation. In the evaluation part, the authors compared their algorithm with five

other well-known solutions. According to the results, the algorithm proved beneficial for both users

and resource providers. The mechanism could plan from 8 to 15 percent more user applications than

the other ones and had a higher success rate indicating the level of compliance with deadlines. The

evaluation of the proposed approach is as follows:

• measures - success ratio, urgency vs. success ratio and number of deadlines missed;

• security - not considered;

• specific clients requirements - QoS and deadline;

• purpose/reason - maximum utilization of resources and meeting deadlines.

Another approach based on auctions was presented by Borjigin et al. [29]. Their study addresses

the topic of Network Function Virtualization paradigm (NFV) and introduces some new ideas related

to the planning and management of network resources. NFV makes use of the virtualized network

functions (VNFs), i.e. virtualized tasks separated from the network hardware arranged by network

service providers. The development of NFV faces various technical problems in the service of VNF.
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Firstly, hardware and software can be operated by different service providers, which increases latency

or unstable throughput. Secondly, it is difficult to coordinate providers managing virtual resources in

such a way as to ensure adequate service performance. Thus, the authors presented a double auction-

based resource scheduling method that allows the appropriate utilization of resources and ensures

high performance of services on the NFV market. As it is shown in Fig. 2.2, their model includes the

participation of both suppliers and customers in auctions. Borjigin et al. proposed three algorithms

to optimize profits in data center networks by providing a bidding price and asking price. The first

algorithm presents the details of the double-auction process. The second algorithm is associated with

the process of price adjustment, which ensures the profits of both the buyer and the seller. The third

algorithm is able to calculate such a price to attract customers. In the simulation part, these algorithms

were compared with a single-auction model. The results showed that they increased the profits of

customers and resource providers.

Storage Firewall Routing
Service Chain Request

Storage Firewall Routing
Service Chain Request

Storage Firewall Routing
Service Chain Request

Bidding

Customer
Bidding

Customer

Bidding

Customer

NFV Provider
(Broker)Asking

Service Supplier

Routing VNF
Firewall VNF

Storage VNF

Asking

Service Supplier

Routing VNF
Firewall VNF

Storage VNF

Asking

Service Supplier

Routing VNF
Firewall VNF

Storage VNF

Fig. 2.2. Double auction between service suppliers and customers in an NFV mar-

ket by Borjigin et al. [29]

This approach is interesting because it introduces an element of competitiveness. However, it is used

to allocate specific resources to users and not to task scheduling on those resources. The evaluation

of the proposed approach is as follows:

• measures - profits for customers and suppliers;

• security - not considered;
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• specific clients requirements - not considered;

• purpose/reason - minimization of customer costs and maximal utilization of resources.

Kołodziej and Xhafa [30] proposed a scheduling model simultaneously allowing aggregation of

task abortion and ensuring security requirements, which are the criteria for the cumulative objec-

tive function along with makespan and flowtime. They defined a meta-broker being responsible for

checking the security conditions and availability of resources. The level of security in their approach

is determined on the basis of trust level (tl) parameters defined for the resources and security demand

(sd) defined for the tasks. These parameters depend mainly on the specific requirements of the user,

security policy, history of attacks or the ability to self-defence. They are described in more detail in

[31]:

– security demand - related to tasks, specified for each task in the job, refers to data integration,

task sensitivity, peer authentication, access control and task execution environment, is defined

as a vector:

SD = [sdj , sdj+1, . . . , sdn] (2.1)

where

sdj – one of security demand parameters, assumes a value within the range [0,1], where

0 represents the lowest and 1 the highest security requirements for execution task

j

n – number of tasks in the job

– trust level - related to resources, specified for all resources in the system, this metric determines

the level of client trust to the resource manager, refers to prior task execution success rate, cu-

mulative grid cluster utilization, firewall capabilities, intrusion detection capabilities, intrusion

response capabilities, is defined as a vector:

TL = [tli, tli+1, . . . , tlm] (2.2)

where

tli – one of trust level parameters assumes a value within the range [0,1], where 0 rep-

resents the riskiest and 1 fully trusted machine i

m – number of resources

On the basis of the sd and tl, it is possible to assess whether the condition of ensuring security is met

and, consequently, whether the task can be successfully executed on a given machine. It means that
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sdj ≤ tli for a given (j, i) task-machine pair. In the experimental section, the authors compared the

results of scheduling carried out in 2 different modes: a secure mode where all the security conditions

and resource uncertainty are verified for the task-machine pairs and a risky mode where all risky

and failing conditions are ignored. The measurement of the makespan showed that, in comparison to

the classic approach, some scheduling algorithms performed better in risky mode when put in Grid

environments having medium or large size. On the other hand, the secure mode brought the best

results in all grid instances. The referred article addresses security issues but its scope is fairly narrow

and theoretical. It does not discuss such issues as checking the inviolability of tasks and results,

unauthorized modification or correctness of the prepared schedule. The evaluation of the proposed

approach is as follows:

• measures - makespan and flowtime;

• security - trust level and security demand;

• specific clients requirements - not considered;

• purpose/reason - dynamics of the Grid systems and taking into account security requirements.

Li et al. [32] proposed security and cost-aware scheduling (SCAS) algorithm for different types

of tasks in computational clouds, intended to minimize the total cost of workflow execution while

meeting the assumed deadline and risk rate limits. Their approach was based on the application of

meta-heuristic PSO to create a workflow schedule with tasks mapped to the resources and to the type

and number of virtual machines that should be used. To protect the tasks against snooping, alteration

and spoofing attacks, the authors used three security services: authentication service, integrity ser-

vice and confidentiality service. Each task can require all three types of security measures, with the

security levels depending on the user’s specification. In the experimental section, four different algo-

rithms were tested against three workflows. Then, the impact of security services and risk coefficient

were examined. The results confirmed the effectiveness and practicality of the used algorithm. The

evaluation of the proposed approach is as follows:

• measures - execution time and cost;

• security - authentication service; integrity service and confidentiality service;

• specific clients requirements - deadline;

• purpose/reason - minimize the total workflow execution cost.

Another scheduler is defined by Jakóbik et al. in [33]. The authors present an innovative architec-

tural model based on a multi-agent scheme and security-aware meta scheduler controlled by genetic

A. Wilczyński Blockchain-based task scheduling in computational clouds



18 2.1. Taxonomy of the cloud schedulers
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Fig. 2.3. Task injection attack proposed by Jakóbik et al. [33]

heuristics. The authors focus on the safety of task scheduling in cloud computing and described its

behaviour in the event of a task injection attack. Namely, they considered a situation in which an

attacker, logged in as an authorized consumer, tries to send an unauthorized task (see Fig. 2.3). This,

in turn, triggers a response from the system in the form of an alert sent to the correct place: its veri-

fication takes place before task scheduling. In addition, the authors proposed two models supporting

users security requirements, a scoring model that allows task scheduling only on virtual machines that

have an appropriate level of security, and a model that takes into account the time needed for crypto-

graphic operations associated with each specific task. These models are similar to those described by

Kołodziej and Xhafa [30]. In the experimental part, the influence of non-deterministic time intervals

for the scheduling process on the environment performance was examined, and the makespan for dif-

ferent security levels was calculated. The results showed the effectiveness of the proposed models and

their increasingly positive impact on the system’s safety. The evaluation of the proposed approach is

as follows:

• measures - makespan;

• security - sd and tl;

• specific clients requirements - not considered;

• purpose/reason - prevention of task injection attacks.

On the other hand, one should mention a relatively recent study by Lokhandwala [34] which is par-

ticularly related to the topic of this dissertation because its author resorted to blockchain technology

to solve the problem of task scheduling, In the Lokhandwala’s approach, a decentralized blockchain
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Fig. 2.4. Smart contract algorithm proposed by Lokhandwala [34]

network was used to allocate resources more efficiently, which resulted in the reduction of the con-

sumed energy and, consequently, costs. A load of data centres stored in blocks is checked using smart

contracts [35]. Then, the tasks to be executed are assigned to the data centres with the least load. The

algorithm on which the smart contract was based is shown in Fig. 2.4. In the experimental part, the

correctness of the blockchain network was first checked and, subsequently, the solution was evaluated.

To conduct experiments Shortest Job First (SJF) algorithm was applied whose main purpose was to

minimize the waiting time of virtual machine (VM) response. However, the author did not measure

the actual impact of the method on the waiting time of VM response, which would require its com-

parison with one of the classical methods not based on blockchain. The focus was more on testing the

functioning of the blockchain network as such, which included assigning the tasks to the appropriate

data centres and the security issues, i.e. blockchain resistance to manipulate the data. Lokhandwala

concluded that the use of blockchain was more suitable for data storage than calculating the load

of Data Centres. It was because the block mining process turned out to be very energy-consuming

due to the chosen consensus algorithm (which probably should have been different for the case). The

evaluation of the proposed approach is as follows:

• measures - waiting time;

• security - no possibility to manipulate data;

A. Wilczyński Blockchain-based task scheduling in computational clouds



20 2.1. Taxonomy of the cloud schedulers

• specific clients requirements - not considered;

• purpose/reason - allocate the resources more efficiently, consuming less energy.

Hong et al. [36] discussed the problem of communication and task scheduling among users in

device-to-device network (D2D) [37] so as to effectively reduce the average time of task execution.

Their idea consisted in the use of wasted computing power of mobile devices, which are typically in

the idle state with nothing but notification listeners and other low energy consumption applications

activated.
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Fig. 2.5. Task scheduling in D2D network proposed by Hong et al. [36]

The possibility of using these dormant resources together with the storage can, indeed, lead to highly

profitable and profitable cooperation in the area of executing tasks in D2D networks. There are, how-

ever, some doubts if task scheduling in such systems is fair to everyone. It may look unfair if the users

contributing a lot of their computational resources to others receive little being in dire need. Hence,

Hong et al. proposed an innovative blockchain-based credit system that can be used for task schedul-

ing to enforce justice among D2D network users. Their solution consists of two parts: the cooperative

task scheduling to reduce the average task execution time among the users, and a blockchain-based

credit system to ensure fairness in the network. The system model and the principle of its operation are

presented in Fig. 2.5. The authors checked the impact of various initial credit provided to each user,

different maximum waiting times, task sizes, and time elapsed on the performance. According to the
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results, the proposed model significantly shortens the average task execution time for the requesters

in D2D networks. The evaluation of the proposed approach is as follows:

• measures - waiting time;

• security - not considered;

• specific clients requirements - not considered;

• purpose/reason - shorten the time of task execution in D2D networks.

2.2. Comparison and problems that require further improvement

The analysis of the literature conducted in the previous section reveals that there are many so-

lutions for task scheduling in computational clouds. The authors of each study focused on different

aspects of the issue. A comparison of their methods is presented in Table 2.1.

When it comes to optimizing makespan, all the presented algorithms are decent, but the adopted

approach has one general disadvantage. As only one provider to whom the request by the client is

addressed participates in the preparation of a schedule, there is no certainty that the produced schedule

is optimal and correct. The client must simply trust that the provided algorithms are the reliable and

optimal solution; their confrontation with the ones offered by other providers is impossible. Moreover,

providers are typically reluctant to share information concerning task scheduling and its progress:

such information is considered as confidential. Introduction of an element of rivalry and forcing many

providers to compete with each other in terms of optimization of schedule execution time would no

doubt give the users much more certainty that their tasks are scheduled in a manner optimal for

their requirements. However, to achieve this, one must model the process where many providers can

participate in the scheduling without disclosing their algorithms. The aspect of competitiveness has

been addressed by Garg et al. [28] and Borjigin et al. [29]. Although these studies discuss the solutions

quite strictly related to the auctions and allocation of resources, they show the benefits that may bring

the implementation of competitiveness into the task scheduling process.

Some authors focused their attention on security issues. Kołodziej and Xhafa [30] and Jakóbik

et al. [33] put under scrutiny, among others, security demand and trust level parameters determined

mainly on the basis of the unique users’ requirements, security policy or attack history. Their stud-

ies, although very theoretical and concise, do not take into account the possibility of falsification or

modification of the schedule. As far as security is concerned, it should be ensured that the data is not

manipulated. In other words, the user must be sure that the prepared schedule is correct. Otherwise,

most likely after launching the procedure of its execution, it fails, leaving the client empty-handed

and with a fresh bill for resources utilization to pay. Some of the approaches take into consideration
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the specific requirements of users such as the deadline for the specific tasks or QoS, these parameters

improve customer satisfaction and their application is justified.

Paper Measures Security

Specific

Clients

Requirements

Purpose/Reason

approaches related to the optimization of the execution time and costs

[23]
cost of completing

the application
not considered not considered

optimization of

costs incurred by

the client

[24]
cost, completion

time
not considered QoS

limited resources of

a single provider

[26]

the total cost to

system, the

maximum cost of a

machine, maximum

turnaround time

not considered not considered

taking into account

the interaction

between users in

the cloud,

minimization of

costs

[28]

success ratio,

urgency vs. success

ratio, number of

deadlines missed

not considered QoS, deadline

maximal utilization

of resources, meet

deadlines

[29]
profits of customer

and suppliers
not considered not considered

minimization of

customer costs,

maximal utilization

of resources

approaches related to the security issues

[30] makespan, flowtime
trust level,

security demand
not considered

dynamics of the

Grid systems,

taking into account

security

requirements
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[32] execution time, cost

authentication

service, integrity

service,

confidentiality

service

deadline

minimize the total

workflow execution

cost

[33] makespan
security demand,

trust level
not considered

prevention of task

injection attacks

blockchain-based approaches

[34] waiting time
no possibility to

manipulate data
not considered

allocate the

resources more

efficiently,

consuming less

energy

[36] waiting time not considered not considered

shorten the time of

task execution in

D2D networks

Table 2.1. Comparison of selected solutions for task scheduling

Finally, there are two approaches making use of blockchain technology. Lokhandwala [34] ap-

plied it to store information on the availability of a given data center and the possibility of sending

further tasks to it. The author also emphasized the security this technology provides. Hong et al. [36]

used blockchain in a different manner, i.e. in D2D network to synchronize and execute tasks on dif-

ferent mobile devices. Their approach clearly shows the reliability of blockchain technology and the

benefits that blockchain network decentralization can bring. The remuneration model presented there

can be included in the scheduling of tasks to reward schedule providers.

As can be seen, the problem of task scheduling is neither a new area of research nor a niche issue.

However, it still needs many improvements and contributions, especially in terms of optimization and

security aspects.
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Chapter 3

Problem of Task Scheduling in
Computational Clouds

In this chapter, a scheduling problem considered in the dissertation has been formally defined with

relation to the attributes posed in Section 1.2. Then, the task and machines used in the proposed

model are defined as general terms. Finally, the criteria and assumptions regarding evaluation of the

proposed approach are presented.

3.1. Problem formulation

In order to formulate the instance of the problem of task scheduling in computational clouds, the

following terms need to be clarified:

– task/job - a single task to execute,

– batch - set of tasks/jobs to execute; there may be dependencies between the tasks in the batch

In this dissertation, the problem of independent batch static scheduling [16] is considered. This means

that there are no dependencies between the tasks to be executed; the tasks are processed in batch

and the characteristics of the virtual machines used to execute the tasks do not change during the

execution. The considered problem can be formulated as follows:{
Minimize(makespan/flowtime/economic cost/resource utilization)

Maximize(SL(schedule))
(3.1)

where:

makespan – described in Eq. 1.1

flowtime – described in Eq. 1.2
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economic cost – described in Eq. 1.3

resource utilization – described in Eq. 1.4

/ – means ’or’

SL – described in Section 3.3

The partial goals of the proposed approach are:

– execution of the schedule in the shortest possible time,

– minimization of costs incurred by the client,

– meeting specific user requirements, such as maximum cost, security aspects etc. defined by

customers,

– ensuring that the prepared schedule is correct, checked by several different providers of sched-

ule,

– limit the possibilities of falsifying the prepared schedule,

– using multiple scheduling modules at the same time without the necessity to set up secure

connections between them; it forces competition between schedule providers who do not need

to reveal their scheduling algorithms.

The considered independent batch static scheduling was solved in the following steps:

1. Obtaining jobs to be executed along with the specific requirements of the client.

2. The choice of virtual machines to execute tasks, taking into account the specific requirements

(e.g. geographical location of physical servers or security aspects) of the client and define the

expected SL.

3. Preparation of the characteristics of tasks and virtual machines ([wl1, . . . , wln], [cc1, . . . , ccm]).

4. Preparation of the schedule for executing tasks from batch on the available virtual machines by

many different schedule providers.

5. Getting an optimal schedule, taking into account the expected level of security.

6. Allocation of tasks to virtual machines.
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3.2. Tasks and machines

Tasks and machines are the main elements of each task scheduling model. Tasks are defined and

sent to the cloud by the end-users, while machines or computing units are resources provided by the

cloud resource providers. Both constituents must be appropriately characterized so that to define how

many tasks can be performed on a given machine at a given time. In one of the most popular models,

tasks are described by computational needs and concern, among others, the execution of the job,

service or set of services. On the other hand, the machines are described by their computing abilities,

regardless of the characteristics associated with memory or disk space. They can be represented by

a virtual resource, a single computer or increasingly popular mobile devices [38]. One of the most

popular notations that describes a task and a machine was presented by Kołodziej [31]. In the proposed

model, tasks are independent and, together with machines, characterized only by the attributes related

to the computing capabilities of a resource. In the above approach, the following assumptions are

made:

– n – number of tasks in a batch,

– m – number of machines available to execute a given batch of tasks,

– N = {1, . . . , n} - the set of task numbers from the batch,

– M = {1, . . . ,m} - the set of machine numbers.

Considering the above assumptions, tasks and machines can be defined as follows:

– Task j - described by workload expressed in floating point operations (FLO) and marked as

wlj , [wl1, . . . , wln], it is a workload vector for all tasks in the batch,

– Machine i - described by computing capacity expressed in floating point operations performed

in one second (FLOPS) by the machine and marked as cci, [cc1, . . . , ccm], it is a computing

capacity vector for all machines available to execute a batch.

Task workload can be estimated according to the user’s specification, historical statistics or obtained

from system predictions [39]. Computing capacity of the machine can be estimated on the basis of

the results obtained by benchmarks [40], [41], for instance, using Linpack Benchmark [42].

3.3. Schedule security level

Ensuring an appropriate security level is a very important problem in the process of preparing

schedules. There are many security issues that require special attention and continuous improvement,

the main ones are:
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– difficulties in ensuring privacy and data confidentiality,

– possibility of falsifying the schedule by providers,

– unauthorized modification of results,

– the vulnerability of computing units to failures,

– performing a given task on a machine with specific security parameters (antivirus, firewall,

etc.).

A realistic task scheduling model should take into account the above factors and simulate their occur-

rence. The proposed solution defines security of the schedule as a security level (SL). The SL value

consists of three main factors: P failure, P fake and P hacking [43].

P failure is the probability of machine failure during tasks execution due to high security restrictions.

P failurei,j for specific machine i and task j was defined by Kołodziej [31] as follows:

P failurei,j =

{
0 sdj ≤ tli
1− e−α(sdj−tli) sdj > tli

(3.2)

where

α – failure coefficient defined as a global parameter

sdj – described in Eq. 2.1

tli – described in Eq. 2.2

Considering the above probability of machine failure during execution of task j on the machine i,

P failure for the schedule is defined as follows:

P failure =

∑n
j=1 P failurei,j

n
(3.3)

where

j – task number

i – machine number

n – number of tasks in the batch

P fake is the probability that the scheduling module will send a false or incorrect schedule, with the

assumed value within the range [0, 1], where 0 represents the lowest and 1 represents the highest

probability of schedule falsification by the schedule provider.

P hacking is the probability of manipulation, i. e. modification of the prepared schedule by unautho-

rized entities, with the assumed value within the range [0, 1], where 0 represents the lowest and 1

represents the highest probability to modify results by unauthorized entities.
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Taking into account the above three factors, SL has been defined as follows:

SL = 3− P failure − P fake − P hacking (3.4)

SL takes values within the range [0, 3], where 0 indicates a very low level of security of the schedule

(very risky schedule) and 3 indicates a very high level of security (very secure schedule). Promising

technology and methodology to improve the security aspects of scheduling is blockchain technology,

which is described in the next chapter.

3.4. Model evaluation

Metrics for model evaluation must address the issues pertaining to the optimization of the sched-

ule, mainly its execution time, which has a large impact on the costs incurred by the client and also

security issues. The proposed model in the experimental part was evaluated according to the following

criteria:

– makespan,

– flowtime,

– economic cost,

– resource utilization,

– SL.

The above criteria were all described in detail in Sections 1.2.2 and 3.3. Besides, the following as-

sumptions regarding the evaluation of the adopted solution were made:

– communication between different data centres, responsible for task execution, was omitted,

– all data needed to complete the task were either located in computing units or their collection

did not affect the execution time,

– only the schedule preparation process was considered, the monitoring of its execution was not

included,

– getting fees by cloud service providers for participating in preparing schedules was omitted.
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Chapter 4

Introduction to the Blockchain
Technology

In this chapter, the blockchain essentials were presented. The terminology for blockchain technology

is defined here as:

– blockchain - the actual ledger,

– blockchain technology - a term describing the technology in its most general form,

– blockchain network - network in which a blockchain is being used,

– blockchain system - system based on blockchain technology,

– blockchain node - an individual system in blockchain network,

– blockchain user - a person or entity which is using the blockchain network.

Few existing taxonomies of the blockchain network were described here. Then, the generic model

blockchain network with its main components and basic algorithms for achieving consensus was

defined.

4.1. Definition of blockchain

The recent digital evolution has contributed to the increase of the volume, velocity and variety

of data available on the Internet. In the era of Information and Communication Technology (ICT,

one struggles with such problems as collecting and optimally managing such large amounts of data.

Research and engineering challenging tasks related to the ICT systems are: ensuring secure network

communication of users, data processing and data storage without the nefarious involvement of third

parties. The financial aspects are also crucial. One of the possible solution of such problems may be
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the application of the blockchain BC technology and networks for development of the new models

of the networks and ICT systems, especially in the cases where security aspects are important [44].

There are many definitions of the blockchain (the actual ledger). Most of them refer to the origins

of the blockchain technology that evolved from Bitcoin created by Satoshi Nakamoto in 2008 [45].

Blockchain is a distributed ledger of records, which contains cryptographically signed transactions

that are grouped into blocks. The essentials in the blockchain technology described by Zheng et al.

[46], and Tasca and Tessone [47] can be specified as follows:

– decentralization - in all standard transaction systems, there is typically a central unit called the

supervisor, confirming the compliance of the transaction and records it in the system. Since such

a core unit must handle all the requests and approve them, it is often a bottleneck that determines

the efficiency of the entire system. BC lacks that problematic central supervisor because the

decentralized nature of the BC system based on consensus algorithm jointly confirms each

transaction, maintaining data consistency,

– persistency - since the transactions are validated, any attempt to approve transactions being in-

compatible with the established policies are immediately detected by confirming/mining nodes;

blocks containing incorrect data are immediately detected, too,

– anonymity - each user in the network is assigned a generated address (hash) by means of which

they can perform operations. This address does not allow unambiguous identification of a real

user,

– auditability - each transaction must refer to some previous transactions; hence there is a possi-

bility to trace and verify what has happened with the processed data. For instance, in the bitcoin

network one can check how the balance of a given user has changed since the beginning of its

existence in the system,

– transparency - transactions of any public address are available for inspection by every user

having access to BC; each user of the public network has the same rights,

– security - chain of blocks are shared, tamper-proof, and cannot be spoofed due to one-way cryp-

tographic hash functions. The security of transactions is ensured by the use of cryptographic

methods. Roughly speaking, users can send data only if they have a private key. The private

key is applied to generate a signature, which in, turn, serves to confirm that transaction was

requested by a specific user and to prevent it from being changed,

– immutability - data stored in BC are immutable; each entry in the ledger must be confirmed by

the network, so it cannot be a secret operation. Each block contains the hash of the previous

block, which is generated on the basis of the data in the block. Therefore, even a minor change
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in the data results in the change of the hash and consequent interception and rejection of the

modification by the other nodes.

4.2. Blockchain taxonomy

Although blockchain is a relatively new technology, there are few different blockchain taxonomies

defined in the literature. Lin and Liao [48] divided blockchain technologies into three types, depend-

ing on the character of data availability:

– public blockchain - everyone has access to the transaction and can participate in the process of

obtaining a consensus; the examples of such a network are bitcoin or ethereum [49], see Fig.

4.1,

Fig. 4.1. Public blockchain

– private blockchain - not every node can participate in blockchain network and read the ledger;

instead, access is limited and strict management of access rights is implemented. A private BC

is shown in Fig. 4.2,

Fig. 4.2. Private blockchain
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– consortium blockchain - some pre-selected nodes have direct access to BC and only the nodes

from the consortium are allowed to add data; the data to be viewed can be open or private. A

consortium BC is shown in Fig. 4.3.

Fig. 4.3. Consortium blockchain

Another taxonomy is defined for the blockchain network. Cohn et al. in [50] defined the following

two classes according to the authorization criterion:

– permissioned blockchains - proprietary networks used by specific persons or entities, for in-

stance, a group of cooperating banks that process financial transactions,

– permissionless blockchains - open networks to which anyone can access and use data located

there.

When it comes to basic functionality and smart contracts [35], Hileman and Rauches [51] consid-

ered two types of blockchain networks:

– stateless blockchain - ’transaction-optimes’, networks limited to the functionality of the chain

in terms of the computational complexity that they can perform (e.g. bitcoin),

– stateful blockchain - ’logic-optimised’, networks that have expandable functionality in terms of

expressing computation (e.g. dApps in ethereum [52]).

Blockchain technology is beneficial and the particular type of blockchain network should be cho-

sen depending on the service that is offered and the market needs.

4.3. Blockchain network

BC network is often defined as the distributed network as it is demonstrated in Fig.4.4. The

blockchain network is usually composed of the following main elements:

– nodes - individual systems that store blockchain and ensure transactions are valid,
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Fig. 4.4. Decentralized blockchain network

– users - persons or entities that can read the ledger.

Blockchain network is peer-to-peer (P2P) [53] network, where each node can communicate with

each other without the need of use a central information exchange point. There is no general standard

in creating blockchain network that would allow communication between all blockchain networks.

For now, each blockchain is created separately, and communications between different blockchain

network requires special workarounds. Each BC network works on predefined rules that are agreed

by all nodes in the network. These rules include conditions for adding and validating transactions as

well as the mechanism of interaction between participating nodes. All common communication rules

used by the BC network are called the blockchain protocol.

4.3.1. Blockchain components, protocols and algorithms

Blockchain (the actual ledger) is a chain of blocks, and each block contains a hash digest of the

previous block. The block consists of a block header and data block. Each blockchain implementation

is different and may alter in some fields. One of the basic data sets is presented by Yaga et al. in [54]

where the following fields exist:

1. Block Header:

– block number,
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H5 = hash(H1,H2) H6 = hash(H3,H4)

H1 = hash(Data1) H2 = hash(Data2) H3 = hash(Data3) H4 = hash(Data4)

Root = hash(H5,H6)

Data1 Data2 Data3 Data4

Fig. 4.5. Merkle tree

– hash of a current block - hash generated from the data contained in the block and previous

blocks, usually determined using the Merkle tree, see Fig. 4.5; any modification of the

data in the block will change the hash,

– hash of a previous block,

– timestamp,

– nonce value - the value usually used in BC based on Proof of Work (PoW, see Section

4.3.2. Its finding usually consists in solving the hash function, which allows adding the

block to the chain.

2. Block Data:

(a) a list of transactions - a single transaction usually consists of:

– inputs - the input data are usually digital assets to be sent; the source of the asset (its

origin) is located here, for instance, in the case of cryptocurrencies, it is amount of

sent money,

– outputs - in the outputs usually the recipient of digital assets is defined, along with

how many digital assets are receiving and conditions that must be met to spend this

value,

(b) other data.

Each ledger starts with a block called Genesis Block, each block must be added to the chain after it.

The genesis block defines the initial state of the system. An example of chain of blocks is shown in

Fig. 4.6. The blockchain operation comprises a few simple steps:

1. The sending node prepares new data as a transaction and broadcasts it over the network.
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Fig. 4.6. Generic chain of blocks

2. The receiving node verifies the transaction and the data included in it. Each transaction must

be signed and authorized using asymmetric cryptography [55]. The private key is used to sign

transactions, while the public key is used to identify the user (user address) and verify the

signature generated with the private key. With this mechanism, it is possible to check whether

the user who sent the message is its author. The procedure of signing and verification of the

signature is shown in Fig. 4.7. Whenever the transaction and data pass the validation process,

the node responds to the sending node and saves the transaction in the block.

Public key

Private key

Transaction Transaction Transaction approved

Signing 
algorithm

A copy of public key

Signature

Signature verification 
algorithm

A node on 
the Blockchan

Sender Receiver

Fig. 4.7. The procedure of signing and verification of the signature

3. After saving the appropriate number of validated transactions in a local block, nodes start the

block confirmation procedure in accordance with the consensus adopted in the network.

A. Wilczyński Blockchain-based task scheduling in computational clouds



38 4.3. Blockchain network

4. The block is saved in the chain after the execution of consensus algorithm (block confirmation

by the appropriate number of nodes).

5. Every node in the BC network must locally save the approved block and include it in its chain.

In every BC network, many blocks may be published at about the same time. Consequently, the

existence of different versions of the blockchain in various places is possible. This can happen for a

variety of reasons, for instance due to network latency between nodes. To ensure consistency, such a

situation must be resolved quickly. This type of problem is shown in Fig. 4.8. As can be seen in the

figure, a conflict occurs after adding the block i+2. The block added by nodeA contains transactions

1, 2 and 3 while the block added by node B contains transaction 1, 2 and 4. Therefore, it is not the

same block. Such differences do not result from the poor completion of the blocks. In fact, they arise

from the almost simultaneous confirmation of different transactions by the nodes. Most BC networks

deal with this problem while waiting for the addition of the next block by one of the nodes. It is

assumed that the ’longer blockchain’ wins. In other words, the winner is the node that is quicker to

add the next block after the block including the above conflict.

Blocki

Block Data

Block Header

Blocki+1

Block Data

Block Header

Blocki+2 created by
Node A

Block Header

Block Data

Transaction 1

Transaction 2

Transaction 3

Blocki+2 created by
Node B

Block Header

Block Data

Transaction 1

Transaction 2

Transaction 4

Fig. 4.8. Blockchain in conflict
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4.3.2. Consensus models

A key aspect of blockchain technology is to determine which user can publish the next block. This

requires the implementation of a consensus model. There are many different techniques for obtaining

consensus in blockchain networks. The most important of them are presented below:

– Proof of Work (PoW) - this model is the most popular method of obtaining a consensus in

BC network. The node can add a block after solving a computationally intensive puzzle or

cryptographic function, which can only be done by brute force [56]. In PoW, the probability of

mining a new block by a node depends on the ratio of its computing power intended to solve

the puzzle to the total computing power of all miners connected to the network. An example of

puzzle was presented below. The node using the hash function SHA-256 [57] must find a hash

value meeting the following criteria:

SHA256("schedule" + "nonce") = hash value starting with "09"

The nonce value is a numeric value that is added to the string ’schedule’. After each hash

calculation the nonce value is changed. This operation is repeated until the hash value has the

form of string beginning with "09".

SHA256("schedule" + "113") = f8ac5c8094a5ebe334ebe4ba1cde6e29acc718743575933

d6c622406177a6aa4 - means “not solved”

SHA256("schedule" + "114") = a8007fd4ef5eded7a095d958b3af9e89b48b1bc3a313555

d140f8aa400eb7a6a - means “not solved”

SHA256(schedule + "115") = 09ce2827da9ebc62bc2491ce96bdf366044247f17860826

2154d6eefb8f40721 - means “solved”

The above puzzle is not difficult, but its complexity increases with each addition of a subse-

quent character to string 09. This model is adopted in such networks where suspicion prevails

over trust. Although it works well, its obvious disadvantage is the consumption of a very large

amount of energy to solve the puzzles. This type of consensus has been used in such networks

as Bitcoin or Litecoin (cryptocurrencies).

– Proof of Stake (PoS) - this model combines generating blocks with the possession of a certain

amount of digital assets in BC. The selection of a node to perform a function of a validator

checking if the next block can be added to the chain is based on the number of assets it includes:
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the more assets a node has, the more likely it is to be selected. The strategy is, therefore, based

on the assumption that nodes with more assets can provide more reliable information than those

having fewer assets. Usually, tokens are used to determine the number of assets. Assuming that

a node in the network has a maximum of 100 tokens and the node has 20 tokens, it has a 20%

chance to become a validator and mine a block. Such an approach may lead to a problem related

to the monopolisation of the network, where the node with large assets accumulates the assets

faster than others. Therefore, in some solutions, limitations associated with adding blocks are

applied. After mining the block, the node must wait some time before confirming the next one.

Other solutions introduce limitations of the lifetime of tokens: they are only valid for a specified

time. Contrary to PoW, PoS does not need to consume much energy to solve puzzles and works

more economically. However, in order to choose a validator, nodes have to merge into groups,

which causes centralization. This approach is used, for instance, in Decred [58] or Peercoin

[59]. The algorithm proposed in this dissertation called Proof of Schedule is derived from this

consensus model.

– Proof of Authority - in this model, nodes are not asked to solve puzzles or mathematical prob-

lems. Instead, the network includes hard-configured units called ’authorities’, which are autho-

rized to add new blocks and secure the blockchain network. This strategy tends to work well

in private or consortium blockchains. Authorities receive a set of private keys that have special

permissions in the network. The networks based on proof of authority may, nevertheless, have

some issues concerning the distribution of mining load between signers and the control of the

frequency of mining.

4.3.3. Security aspects in BC networks

Security in BC networks is provided by means of advanced cryptographic techniques, various

methods for determining consensus and, above all, the core aspect of this technology, i.e. immutability

of data. Joshi et al. in [60] defined several important security principles that should be followed when

building and supporting a blockchain network:

– defence in penetration - the use of multiple layers of security is more effective than the appli-

cation of a single layer,

– minimum privilege - access to data should be limited to the lowest possible level,

– manage vulnerabilities - security vulnerabilities ought to be constantly checked and corrected,

– manage risks - the risk should be regularly assessed and managed at an environmental level,

– manage patches - faulty system components should be corrected, tested and developed as

patches for the successive versions of the application.
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Blockchain systems are based on many techniques that ensure an adequate level of security. In

practice, consensus models are responsible for providing the appropriate level of network safety.

For example in PoW to make the network fake, the node would have to possess at least 51% of the

computing resources of the entire network to be able to falsify the information contained in the blocks,

which is hardly possible in practice [20].
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Chapter 5

Introduction to the Stackelberg Games

This chapter introduces the mathematical backgrounds of the game theory, where the model of player,

strategy, payoff function and equilibrium state are formally defined. Then, the popular types of sym-

metric and asymmetric games are presented with a special focus on the Stackelberg asymmetric game,

which is used in solving the problems defined in this dissertation.

5.1. Game theory

Game theory is a formal methodology for the analysis of interactions between intelligent players,

decision makers, agents or corporations. It is an useful tool for solving problems in economics, busi-

ness, law, politics and many other areas. Game theory may be also successfully applied for solving the

problems, where security aspects are very important [61]. IT systems very often use game theory to

determine optimal decisions [21]. In general, game is defined for a set of players. Each player has the

set of strategies, which determines the player’s actions during the game and are used for calculation

of the benefits for the players as the values of the game payoff function. The solution of the game is

the equilibrium state, which is often defined as the global optimum of such function. Formally, the

n-players game can be defined as follows:

Γn = ((N, {Si}i∈N , {Hi}i∈N ) (5.1)

where:

N = {1, . . . , n} – the set of players

{S1, . . . , Sn} (cardSi ≥ 2; i = 1, . . . , n ) – the set of strategies of the players

{H1, . . . ,Hn};Hi : S1 × · · · × Sn → R;∀i=1,...,n – the set of payoff functions of the players



44 5.1. Game theory

Strategy is defined as a set of planned actions of a given player. The game strategies can be divided

into following two main categories [62]:

– pure strategy - it is a deterministic plan of action of the player i during the game. In this

dissertation, a set of all pure strategies for the player i is defined by Si. The profile of pure

strategies in the n-players game Γn is determined by the following vector of players’ strategies:

s = [s1, s2, ..., sn] , si ∈ Si; (i = 1, 2, . . . , n). (5.2)

– mixed strategy – assuming that Si = si1 , si2 , . . . , sim is the finite set of m pure strategies of

the player i, ∆Si is the simplex over Si and ∆Si is the set of all probability distributions over

Si, the mixed strategy of player i is defined as the following vector: σi ∈ Si ⊂ ∆Si:

σi = {σi(si1), σi(si2), ..., σi(sim)}, (5.3)

where:

σi(si) – the probability that the player i is playing according to the strategy si

Payoffs are numerical values of the payoff function defined for all layers. In many game-

theoretical models, such function defines the game. Tadelis [62] defined the expected payoff of player

i in 2-players game as:

Hi(si, σ−i) :=
∑

s−i∈S−i
σ−i(s−i)Hi(si, s−i) (5.4)

where the player i chooses a pure strategy si ∈ Si, his opponent chooses a mixed strategy σ−i ∈ ∆S−i

and Hi(si, s−i) is the payoff function calculated for the player i.

In the game Γ , the players strive for maximizing the expected payoff, so they must select the

optimal strategy. The optimal result of the game is a situation where none of the players has the

motivation to change strategy after considering the choice of the opponent [63]. A set of strategies

(one strategy for each player, chosen so that no player can receive higher payoff due to strategy

change) is determined by the Nash equilibrium [64] or Nash equilibrium point [65] and can be defined

as an n-dimensional vector (s̄1, . . . , s̄n) of strategies if:

Hi(s̄1, . . . , s̄n) = max
si∈Si

Hi(s̄1, . . . , s̄i−1, si, s̄i+1, . . . , s̄n) . (5.5)

for all i = 1, . . . , n
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Fig. 5.1. Decision tree in extensive form game [70]

5.2. Types of games

There are various games classifications presented in the research papers.. Bhuiyan [66] define

the classes of games according to the following criteria: number of players, rationality of players,

cooperation, normal or extensive form, and being zero-sum or non-zero-sum game. Durosimi [67]

also distinguished between simultaneous and sequential move games and symmetric and asymmetric

games. Based on the published popular categories, games can be divided into the following classes:

1. Normal form and extensive form games [68], [69]:

– normal form game - the game is described in tabular form. The presented matrices show

the strategies adopted by various players and their possible payoffs,

– extensive form game - the game is described in the form of a decision tree; these types of

games help in handling events that may occur accidentally. Sample decision tree where

player 1 moves first and player 2 after them is shown in Fig. 5.1.

2. Simultaneous and sequential move games [71]:

– simultaneous move game - games in which players move simultaneously; alternatively,

they do not move at the same time, but in such a situation, the players who make the later

move are not aware of the actions of the players who made the earlier move. Normal form

games are often used to represent simultaneous games,

– sequential move game - games in which later-moving players have some knowledge about

the actions of earlier-moving players. It does not have to be full knowledge of the earlier

players’ actions; for instance, it can be restricted to one specific action. An extensive form

game is often used to represent sequential games.

3. Cooperative and non-cooperative games [72], [73]:

– cooperative game - games in which players choose their strategy through negotiation and

agreement with other players,
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– non-cooperative game - games in which players strive to maximize their payoffs and adopt

their strategy accordingly.

4. Constant sum, zero sum and non-zero sum games [74], [75]:

– constant sum game - a game in which the sum of the results of all players remains constant,

even if the results for individual players are different,

– zero sum game - this is a special case of a constant sum game in which the profit of one

player is always equal to the loss of the other player. An example of a zero sum game is

chess, where the profit of one player results in the loss of the other one,

– non-zero sum game - a game in which the sum of the results of all players is not equal

to zero. A non-zero sum game can be transformed into a zero-sum game, an example of

zero sum game is shown in Table 5.1.

A B

A 2,-2 -1,1

B 0,0 3,-3

Table 5.1. A zero sum game

5. Symmetric and asymmetric games [76]:

– symmetric game - a game in which the strategies adopted by all players are the same; the

decisions in a symmetrical game depend on the strategies used and not on the players’

decisions. Even if the players are exchanged, the decisions remain the same,

– asymmetric game - a game in which the strategies adopted by the players are different and

thus the strategy adopted by one player can give different benefits to other players.

5.3. Stackelberg games

Stackelberg game [77] is an example of the asymmetric game in which two roles of players can

be distinguished: leader and follower. The leader is the first to make an action by choosing the best

strategy for himself, then the follower makes his action considering what the leader did. Many players

can participate in such a game. The leader is the only player who makes a move at the first level. Then,

the followers react to his movement trying to minimize the cost function in relation to what the leader

did. At the end, the leader updates his strategy to minimize the total cost of the game. The solution

of that game is called Stackelberg equilibrium. In this state, the followers observe the strategy sl
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of the leader and responds with strategies f(sl) : sl → sf , which are optimal for the expected

payoffs. Solving the Stackelberg game is equivalent to the solution of a maximization problem with

constraints. In general, Stackelberg game can be formulated as follows:



max
sl,sf

Hl(sl, sf )

sf ∈ arg max
sf

{Πf (sl, sf ) : gf (sl, sf ) ≤ 0}

gl(sl, sf ) ≤ 0

(sl, sf ) ∈ S

(5.6)

where Hl and Hf denote the payoff functions defined for the leader and the follower, respectively

[78]. The strategy chosen by the leader can be described as sl = (s1l , . . . , s
T
l ) ∈ Sl, where stl is

a particular decision of the leader at the time t and Sl is a set of possible strategies for the leader.

The strategy chosen by the follower can be described as sf = (s1f , . . . , s
T
f ) ∈ Sf , where stf is a

particular decision of the follower at the time t and Sf is a set of possible strategies for the follower.

The combination of the leader and the follower decisions for any period of time t can be given by

st = (dtl , d
t
f ) ∈ St, where St = Stl x S

t
f is the set of all alternative decisions available to the leader

and follower at time t. The set of all possible choices of the leader and the follower throughout the

game determines S, where:

S =
T
H
t=1
St (5.7)

Usually, there is more than one optimal strategy for the follower and each of them has a different

effect on the payoff for the leader. Two types of Stackelberg equilibrium were distinguished:

– Strong Stackelberg Equilibrium (SSE) - followers break the ties in favour of the defender and

choose the optimal scenario for the leader,

– Weak Stackelberg Equilibrium (WSE) - followers choose the worst case scenario in terms of

benefits for the leader.

In the literature, SSE-related solutions are usually provided, because they exist in all Stackelberg

games, unlike WSE. Formally, a pair of strategies (sl, f(sl)) is defined as Strong Stackelberg Equi-

librium if the following conditions are met [79]:

1. The leader plays best-response:

Hl(sl, f(sl)) ≥ Hl(s
′
l, f(s′l)) (5.8)

for all the strategies s′l of the leader.
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2. The follower plays best-response:

Hf (sl, f(sl)) ≥ Hf (sl, s
′
f ) (5.9)

for all strategies s′f of the follower.

3. The follower breaks ties in favour of the leader:

Hl(sl, f(sl)) ≥ Hl(sl, s
′
f ) (5.10)

for all the optimal strategies s′f of the follower.

According to Ungureanu [80], this type of strategy game should be counted among the General-

ized Stackelberg games. The author emphasized the fact that in this type of game moves of the players

do not take place simultaneously and players choose their strategies in a known order. The game is

defined as a sequential because in each stage one player chooses his strategy. To ensure the selec-

tion of the optimal strategy, player solves the optimization problem. This process can be described as

follows:

1. The first player chooses his strategy s1 ∈ S1 and informs the second player of his choice.

2. The second player chooses his strategy s2 ∈ S2 and informs the third player about the choices

s1 and s2, and so on.

3. At the end, nth player chooses his strategy sn ∈ Sn after knowing the choices s1...sn−1 of

previous players.

When the player p ∈ N makes a move, players from 1 to p − 1 are the leaders or predecessors of

player p, on the other hand, players p + 1, ..., n are followers or successors of the player p. Players

have full information about the choices of predecessors but have no information about the choices

of their successors. Only the pth player (p < n) has full information about the sets of strategies

and payoff functions of all players p, p + 1, ..., n. The Stackelberg equilibrium requires induction

on the reverse sequence of players, through which the player n calculates his best move mapping

and players n − 1, n − 2, ..., 2, 1 calculate their best moves Stackelberg mappings. The problem of

calculating Stackelberg equilibrium in such a game, where we have more than two players is NP-hard

[81].

The scenario close to the one presented by Ungureanu is considered for the topic of this disser-

tation, where Stackelberg game is used to choose the best schedule. This is an issue of linear pro-

gramming (LP) [82], an optimization problem with constraints that can be solved using the simplex

method [83]. This method is very efficient in providing an optimal solution to the puzzles containing

thousands of decision variables and restrictions. It uses an iterative algorithm to find the optimal so-

lution, and also provides the information about slack variables (unused resources) and shadow prices

(alternative costs) that can be useful in conducting sensitivity analysis [84].
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Chapter 6

Secure Blockchain Scheduler

This chapter presents a description of the proposed Secure Blockchain Scheduler model based on

the BC technology, in which the method of establishing consensus in the network is the key issue.

The initial sections define the consensus establishment algorithm as Proof of Schedule procedure

based on the Stackelberg game. Then, one provides the characteristics of the most important modules

and parameters of the developed Blockchain Secure Cloud Scheduler Simulator implemented for

experimental evaluation of proposed model.

6.1. Blockchain scheduler model

Task scheduling systems available on the market (e.g., Amazon ECS [85]) use many variations of

scheduling algorithms (FCFS [86], SJF [87] etc.) that are, nevertheless, not publicly available. Cloud

service providers such as Amazon Web Services (AWS) [88] or Azure [89] use their own algorithms

to prepare schedules. The clients, wishing to use their services, send the task to them and can only

trust that it will be done according to their expectations at the lowest possible cost. The internal al-

gorithms used by service providers are not always optimal in taking account of the specific customer

requirements. As part of this dissertation the new Secure Blockchain Scheduler (BS) model, which is

based on the BC technology was developed. This is a new method of generation of an optimal sched-

ule, where both the specific customer needs and security requirements are taken into account. To make

the model available to every scheduler provider who would like to participate in the preparation of

the schedule, the public blockchain was selected. This type of approach leads to competition between

different providers. The provider who prepares the schedule meeting the client’s requirements faster,

wins. In this case, the so-called inter-clouds [25] approach is referred which assumes the possibility

of cooperation between clouds whenever they need additional services or computing resources. The

described model is based on the similar idea according to which the providers can use the services

offered by other providers in order to obtain the best schedule. Communication between different



50 6.1. Blockchain scheduler model

clouds providers is determined by a public blockchain, which is decentralized and does not require

the use of special protocols for information exchange. Therefore, the units specializing only in one

field and not necessarily providing other services can freely participate in the process of generation

of schedules. The general concept of the developed model is presented in Fig. 6.1. The main actors

in that model are clients (end users) and cloud service providers. Its main elements are the pool of

requests, transactions, nodes participating in the transaction approval process and chain of blocks in

which transactions with prepared and confirmed schedules are located and stored.

6.1.1. Clients and cloud service providers

In the model, clients formulate their requirements and direct them to the cloud. These can be

jobs related to running the executable file or executing a fragment of the source code that solves

some mathematical problem. Together with a specification of their needs, they can also provide some

specific conditions, for instance:

– executing tasks on a machine with special security parameters (firewall, antivirus, etc.) due to

data sensitivity and confidentiality,

– data processing only on servers located in a defined geographical location due to legal reasons,

– quick execution of tasks regardless of costs or the exact opposite.

Cloud service providers collect requests from clients, which are then forwarded to Task Managers

(TMs). Based on the received data describing the tasks and the specific requirements of the client,

TM who has knowledge about the available resources/virtual machines (VMs) in his cloud, chooses

the ones that will be the most suitable for their execution. The choice is made taking into account

requirements in terms of security, the physical location of machines, the short waiting time for results

or a small budget of the client. After that, task manager performs a description of the selected VMs

and tasks to be executed.

Each VM is characterized using two factors:

– computing capacity cc (Section 3.2),

– trust level tl (Eq. 2.2).

Each task is characterized using two factors:

– workload wl (Section 3.2),

– security demand sd (Eq. 2.1).

In addition to the specification of machines and tasks, mainly on the basis of security aspects

specified by the client, TM also sets the value of the expected SL parameter for the schedule to be
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Fig. 6.1. Secure Blockchain Scheduler Model
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prepared. If the SL value is equal to 0 then all proposed schedules prepared by the nodes are accepted,

otherwise only those whose SL value is greater than or equal to the value given by TM are considered

as correct. The SL parameter assumes values in the range [0,3] and the higher its value, the longer the

schedule preparation because the majority of prepared schedules are rejected. On the other hand, the

higher the SL value, the more secure the schedule is.

6.1.2. Pool of requests

After preparing the characteristics of the tasks and machines and defining the expected SL, all

the information is defined as the request, which is then sent and collect in the request pool. At this

stage, the request is also signed by the task manager, i.e. the future recipient of the target transaction

containing the prepared schedule. A body of such request is shown in the Fig. 6.2. The request pool

is generally available, and task managers from different clouds can place requests in it. Nodes located

in the blockchain network select those requests for which they would like to generate the schedule.

Tasks
(workload, security demand)

Request Body

Virtual Machines
(computing capacity, trust level)

Expected
Security Level

Signature and Public
Key of the Task

Manager

id

Fig. 6.2. Body of request from the pool of requests

6.1.3. Nodes and transactions

The initiating node retrieves the request from the request pool and prepares the schedule for the

tasks and machines described in it according to its own scheduling algorithm. After the preparation,
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security level
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Fig. 6.3. Body of the transaction

it calculates one of the scheduling criteria, i.e. makespan or flowtime or economic cost or resource

utilization. The obtained results, together with data from request, are placed into the transaction which

is then broadcast over the blockchain network for confirmation. The fully prepared transaction is

shown in Fig. 6.3 and contains such information as:

– id - transaction id generated on the basis of data contained therein,

– sender (PKN) - the public key of the node preparing the transaction,

– recipient (PKTM) - the public key of the task manager creating the request,

– signature (DS) - digital signature made by the node,

– request id - id of the request sent by the task manager,

– information about the prepared schedule:

• tasks - id, workload and security demand of the tasks;

• machines - id, computing capacity, trust level and ids of tasks to execute; each machine

includes the assigned ids of tasks that should be executed on it;

• scheduling criterion (SC) - makespan, flowtime, economic cost or resource utilization.

In the described transaction, SC is the factor that determines whether the schedule is optimal. This

factor will be replaced by makespan, flowtime, economic cost or resource utilization (Section 1.2.2).
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Fig. 6.4. The first few blocks from the chain of blocks of the model

In the experimental part, the model will be evaluated for each of these criteria. After obtaining the

appropriate number of transaction confirmations, the node places it in the block. Before adding the

transaction to the block, the SL value of the prepared schedule is calculated. If the value of SL is,

at least, at the security level specified by TM, the transaction is added to the block. Otherwise, it is

omitted because its further processing and saving in the chain of blocks would be pointless.

6.1.4. Chain of blocks

The block is created and validated after collecting a sufficient number of transactions and the num-

ber of required transaction confirmations is defined as a global parameter for the entire BC network.

Each block consists of:

– the block hash value (Bhv) - calculated on the basis of previous block hash value, a timestamp

and the Merkle tree root hash value,

– the previous block hash value (PBhv),

– a timestamp (Tim),

– the Merkle tree root hash value (MTRhv) (see Fig. 4.5), generated using the SHA-256 hash

function [57],

– a list of transactions - transactions with prepared schedules, containing the information pre-

sented in the Fig. 6.3.

Once all the block building requirements are met, it is mined by mining node and distributed

across the BC network. During block propagation, some conflicts may occur due to the fact that
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several nodes may try to add many blocks at the same time. As a result, different versions of the chain

of blocks may be provided (see Fig. 4.8). Such situations are resolved by adopting a rule to wait for

the next added block and invariably recognize a longer sequence of blocks as official; in other words,

the first node successful in adding the next block prevails. The algorithm for establishing consensus

between nodes, verifying the correctness of the schedule and mining new blocks is characterized in

Section 6.2. After confirming the chain throughout the BC network and recognizing it as official (a

fragment of such a chain is shown in the Fig. 6.4) task managers can load the schedule prepared for

them. They obtain it using their public key; each transaction with prepared schedule is addressed to

the TM whose PKTM was given in the pool of requests. Having the schedule, TM can allocate tasks

to the resources and monitoring them. At this moment, the whole process ends.

6.2. Proof of schedule

The model proposed in the previous section requires an appropriate consensus algorithm dedi-

cated to regulating schedule checking and adding new blocks to the chain. The proposed consensus

algorithm has been defined as Proof of Schedule (PoSch) [90] and is described in the following sec-

tions.

6.2.1. Generalized Stackelberg game

In the approval of the schedule (transaction) nodes (task schedulers) from i to l take part. Node tsi
based on the pool of tasks and their workloads and the pool of virtual machines and their computing

capacities prepares the most optimal schedule according to its own algorithm and gives its adopted

scheduling criterion, let’s assume that in this case it is makespan. After the preparation, schedule is

placed in the transaction and disseminates across the network. The nodes that receive the transac-

tion for confirmation also prepare the schedule according to their own algorithms and calculate its

makespan. The following notation will be used to present the described procedure:

– TS = {tsi, tsi+1, . . . , tsl} - the set of nodes involved in confirming transaction,

– wlj - characterization of the task j (see Section 3.2),

– wl(schedule) - the sum of vector elements [wl1, . . . , wln], defined for all tasks from schedule,

– tsi - node initiating the transaction,

– tsi+1 - first node confirming the transaction,

– Mtsi - makespan of the schedule determined by node tsi,

– Mtsi+1 - makespan of the schedule determined by node tsi+1,
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– SFtsi - scheduling factor of the tsi node, the sum of wl(schedule) for all schedules in the

blockchain added by node tsi,

– SFtsi+1 - scheduling factor of the tsi+1 node, the sum of wlsch for all schedules in the

blockchain added by node tsi+1,

– BWt - the sum ofwl(schedule) for all schedules added to the blockchain within a given period

of time t.

Each subsequent node verifies the schedule sent by its predecessor, which does not mean that the pre-

decessor prepared it itself (it can be actually a schedule from the initiating node). First, it prepares the

schedule according to its own algorithm and then it calculates its makespan. The aforesaid schedule

confirmation/approval can be formally modelled using Generalized Stackelberg Game described in

Section 5.3. In such a game, there are many players and the game is defined as sequential with the

choice of strategy by one player in each stage. In first stage, the game takes place between nodes

tsi − leader and tsi+1 − follower; the assumption is that the node tsi has already made its move.

The next move is performed by node tsi+1, which has two options to choose:

• Mtsi - makespan proposed by the leader tsi;

• Mtsi+1 - makespan calculated by its own algorithm.

The follower chooses one of two pure strategies (see Eq. 5.2) defined as:

• s1 - choosing makespan Mtsi ;

• s2 - choosing makespan Mtsi+1 ;

where s1, s2 ∈ {0, 1}.

To determine the utility function for the follower, the scheduling factors, which are treat as confidence

coefficients must be scaled, which is carried out as follows:

SFtsi =

 1 if max {SFtsi+1 , SFtsi} = SFtsi
SFtsi
SFtsi+1

if max {SFtsi+1 , SFtsi} 6= SFtsi

SFtsi+1 =

 1 if max {SFtsi , SFtsi+1} = SFtsi+1

SFtsi+1

SFtsi
if max {SFtsi , SFtsi+1} 6= SFtsi+1

(6.1)

The utility function for the follower depends on both strategies s1 and s2 and scaled confidence

coefficients of players:

u(s1, s2,Mtsi ,Mtsi+1) = MtsiSFtsis1 +Mtsi+1SFtsi+1s2 (6.2)
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Looking for a strategy is tantamount to solving the following problem:


argmax
s1,s2

u(s1, s2,Mtsi ,Mtsi+1)

s1 + s2 = 1

s1, s2 ∈ {0, 1}

(6.3)

The problem 6.3 is a maximization problem with constraints. For the needs of this dissertation, it was

solved using the simplex method [91]. Once the solution, i. e. strategies s1 and s2 , are found, node

tsi+1 chooses:

– the option Mtsi , if s1 = 1 and s2 = 0,

– the option Mtsi+1 , if s2 = 1 and s1 = 0.

If node tsi+1 loses the game (it chose the option Mtsi), it sends transaction from node tsi to the next

node tsi+2 and notifies the node tsi about the correctness of its schedule, so the next stage of the

sequential game is taking place, where node tsi remains the leader and the follower is the next node

tsi+2. Otherwise, node tsi+1 initiates a new transaction according to its own schedule, becoming a

leader and sends it for verification to the node tsi+2, which is the first follower. The game is carried

out until the node receives confirmation from the appropriate number of TS sequence items. The

fewer confirmations the system requires, the more transactions it can produce in a given time period.

On the other hand, the more confirmations, the more secure and reliable the system is in comparison

to the other systems [92]. Bearing this in mind, this value should be selected individually depend-

ing on the system implementation. In the proposed approach, the minimum number of transaction

confirmation (MTC) is defined as a global parameter during blockchain initialization. SFtsi , SFtsi+1

coefficients must be non-zero, so if nodes participating in the game do not yet have such data, they

must be randomly selected. Similarly, the initiating node tsi, having no predecessor, will choose its

time of schedule.

6.2.2. Blocks mining

The block can contain many transactions. It is ready to be confirmed if the sum of wl(schedule)

for all schedules within all block transactions exceeds the set value:

block is ready to mine if
∑p

i=1 wl(schedulei) ≥ Bwl (6.4)

where

wl(schedule) – described in Section 6.2.1

A. Wilczyński Blockchain-based task scheduling in computational clouds



58 6.2. Proof of schedule

Bwl – minimum block workload defined as a global parameter set during blockchain

initialization

p – number of transactions in the block

When the appropriate Bwl indicator is obtained, the mining node can add a block to the blockchain.

Each transaction in the block must be validated. Validation is intended to check whether the providers

of the transaction inputs have cryptographically signed the transaction. The signature verifies if they

have the right to transfer of funds for participation in the process of preparing the schedule. Confirma-

tion nodes check the published block, verifying that each transaction it contains has been validated,

after which the block can be added to the blockchain. The subsequent blocks are added by nodes

called validators. V alidators are nodes that have so far participated in the transaction creation

process and have also expressed a desire to mine a block. One leader is selected from the pool of val-

idators. The election is made on the basis of adding transaction history of a node covering a specified

period of time. The election criterion is defined as:

{
Lt = max{TF(vi,t), TF(vi+1,t), ..., TF(vr,t)}
∀i = vi, vi+1, ..., vr∀t : TF(i,t) ≤ 1

2BWt

(6.5)

where

Lt – a leader selected to mine a given block

TF(vi,t) – trust factor of the validator vi, the sum of wl(schedule) for all schedules added to the

blockchain by validator vi within a given period of time t defined as a global parameter

set during blockchain initialization

BWt – described in Section 6.2.1

r – number of validators

The above approach originates from the idea of Proof of Stake (see Section 4.3.2, namely from its

specific case referring to the hybrid of coin ageing systems and delegate systems [54]. A node can

become a leader only if its current trust factor does not exceed the value of BWt, which protects BC

network against the so-called 51% attack (or majority attack) to which such systems are vulnerable

[93].

6.2.3. Profits for task schedulers

Nodes involved in creating or confirming transactions and block mining can be rewarded in a

variety of ways. They usually charge a fee for performing specific action. One of the possibilities

is presented below. According to it, nodes (task schedulers) can receive profits for participating in
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operations on which the functioning of BC network is based. The task scheduler profit for creating or

confirming one transaction (schedule) P (schedule) within an entire block can be defined as follows:

P (schedule) =
wl(schedule)

CN ∗ 0.8
(6.6)

where

wl(schedule) – described in Section 6.2.1

CN – the number of all nodes confirming the schedule (including the creating node)

However, profit for mining the block P (block) can be defined as follows:

P (block) = wl(block) ∗ 0.2 (6.7)

where

wl(block) – the sum of wl(schedule) for all transactions in the block

The proposed reward approach is largely dependent on whether the blockchain is public or private. In

the case of this dissertation, blockchain is public, but it can be freely changed to private. Therefore,

the profits model may also change depending on the given implementation.

6.3. Blockchain Secure Cloud Scheduler Simulator

The requirements of the proposed solution, discussed in the earlier sections, and the use of a ded-

icated PoSch consensus algorithm had a consequence: the implementation of the proposed system

could not be based on the existing solutions. Such solutions supporting the production of systems

based on blockchain technology, such as Ethereum [94] at the time of simulator implementation was

not sufficiently developed. The simulator has been implemented as a proof of concept using Java lan-

guage in version 1.8 [95] and was called Blockchain Secure Cloud Scheduler Simulator (BCSched-

CloudSim). The implementation was created using Maven [96], where the name of the project, version

and dependencies with external libraries are specified in the pom.xml file. This section presents the

most important elements of the simulator.

6.3.1. MapDB database

As a data storage in the simulator, the MapDB [97] database was used, which allows saving and

reading unstructured data in a very simple way. MapDB is an open-source solution with the embed-

ded Java database engine and collection structure. Being one of the most efficient Java databases, it

enables the use of such elements as maps, sets, lists or queues and provides such functions as ACID
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transactions, snapshots or incremental backups.The pseudocode responsible for connecting to the

database by means of the DBMaker object is presented below, in Listing 6.1:

Listing 6.1. Connecting to the database using the DBMaker object

1 DBMaker.Maker dbConnection = DBMaker.

2 fileDB(path).fileMmapEnable().fileLockDisable();

3 dbConnection = dbConnection.transactionEnable();

As can be seen, the use of the database is limited to providing the path to the file in which the data is

saved. The file is saved directly to the local disk of the given BC network node. The database is used

to store of a pool of unconfirmed transactions, blocks, or user accounts with their public keys. After

the data is saved by the individual node, an event informing about that is propagated in the network

to update local databases of the other nodes.

6.3.2. Networking

Communication between nodes in the network has been implemented using java sockets and

threads. In socket programming [98] the client must have two information:

– server IP address,

– port number.

An example of one-way socket-based communication is shown in Fig. 6.5.

socket

Connection
Requestconnect

write

read

End Of Fileclose

socket

bind

listen

accept

read

write

read

close

Client Server

Fig. 6.5. One-way socket-based communication
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Two main classes Socket and ServerSocket have been used to establish connections. The Socket

class is used for communication between the client and server so that to read and write messages.

The ServerSocket class is used on the server-side since it has an accept() method that blocks the

console until the client connects, and returns the Socket instance after it is established. The following

Listings 6.2 and 6.3 are samples of the server and client creation pseudocode.

Listing 6.2. Creating Server

1 ServerSocket serverSocket = new ServerSocket(’port’);

2 Socket clientSocket = serverSocket.accept();

Listing 6.3. Creating Client

1 Socket s = new Socket();

2 s.connect(new InetSocketAddress(’server IP address’), ’port’), 10000);

Each node participating in the transaction confirmation process has both a client and a server on its

side. After establishing the connection, every few seconds it sends a signal to the nodes with which it

has previously established a connection to check if they are still active and not turned off. Transactions

are sent only to the currently active nodes. Before sending, the Transaction object is converted into

its JSON representation. Once received, it is converted back to the object, which is done using the

GSON library [99]. Most of the data in objects such as keys or node signatures have been saved in

byte format to facilitate their transmission. The use of this type of data exchange guarantees very fast

and reliable communication.

6.3.3. Transaction approval

The transaction confirmation process is based on an algorithm using the Stackelberg game pre-

sented in Section 6.2.1. The maximization problem with constraints described there was solved using

the Commons Math library [100] that includes the SimplexSolver object. On the Listing 6.4 is pre-

sented the pseudocode of the method that checks whether the transaction can be accepted (or rejected)

by the verification node

Listing 6.4. Pseudocode of the method responsible for transaction approval

1 double s1Coefficient = leader.getSchedule().getMakespan()*

2 leader.getScaleSchedulingFactor();

3 double s2Coefficient = follower.getSchedule().getMakespan()*

4 follower.getScaleSchedulingFactor();

5

6 LinearObjectiveFunction f = new LinearObjectiveFunction(

7 new double[] { s1Coefficient, s2Coefficient }, 0
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8 );

9 Collection<LinearConstraint> constraints = new ArrayList<LinearConstraint>();

10 constraints.add(new LinearConstraint(

11 new double[] { 1, 1 }, Relationship.EQ, 1)

12 );

13 SimplexSolver solver = new SimplexSolver();

14 PointValuePair solution = solver.optimize(

15 new MaxIter(100),

16 f,

17 new LinearConstraintSet(constraints),

18 GoalType.MAXIMIZE,

19 new NonNegativeConstraint(true)

20 );

21

22 double y = solution.getPoint()[1];

23 if (y == 1) {

24 return false;

25 } else {

26 return true;

27 }

First the coefficients s1 and s2 are determined by means of the scaled scheduling factors of the leader

and follower together with makespans calculated for the schedules prepared by them. With the use

of the prepared coefficients, an object of the LinearObjectiveFunction, list of restrictions and a

SimplexSolver object is created and the process of finding a solution to the maximization problem

is initiated. If y is equal to 1, then the schedule prepared by the follower is better, which means that

the leader loses the game and the transaction is rejected. Otherwise, the leader wins and receives

confirmation of the correctness of the transaction from the follower.

6.3.4. Electing a leader and mining blocks

The process of mining blocks is based on Eq. 6.5. After reaching the appropriate number of trans-

actions in the block, i.e. meeting Eq. 6.4, the leader is selected. The node that most often participated

in creating and confirming transactions within a specified time is elected from the validator pool as a

leader and, consequently, granted permission to attach a prepared block to the blockchain.

Listing 6.5. Electing a leader from validators pool

1 public byte[] getLeader()

2 {

3 byte[] maxTrustFactorNode = null;

4 float maxTrustFactor = 0;

5 float BCt = 1/2 * Node.getBlockchainTrustFactor(numberOfDayLimit);
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6 for (byte[] validator : list) {

7 float TF = Node.getTrustFactor(validator, numberOfDayLimit, true);

8 if (TF > maxTrustFactor && TF <= BCt) {

9 maxTrustFactor = TF;

10 maxTrustFactorNode = validator;

11 }

12 }

13 return maxTrustFactorNode;

14 }

As can be seen on the pseudocode presented in Listing 6.5, in method getLeader() based on TF(vi,t)

the leader is selected. The time for which its trust factor is calculated is defined as a global system

parameter.

6.3.5. Starting the node

This section contains a sample of pseudocode that shows the launch of one node instance, see

Listing 6.6. First, the local port of the node is defined and a list of nodes in the network is prepared.

Then, a thread is started, whose task is to occasionally send a signal to the other nodes informing

about the node’s activity.

Listing 6.6. Starting node instance

1 int localPort = 7301;

2 prepareNodeList();

3

4 new Thread(new PeriodicHeartBeat(serverStatus, localPort)).start();

5

6 Context context = new Context();

7

8 localNode = new blockchain.core.Node(context, wallet, serverStatus, localPort);

9 localNode.start();

10

11 ServerSocket serverSocket = new ServerSocket(localPort);

12 while (true) {

13 Socket clientSocket = serverSocket.accept();

14 localNode.addTransactionToPool(...);

15 new Thread(new HeartBeatReceiver(clientSocket, serverStatus, localPort)).

start();

16 }

A context object is created that contains a local database with blocks and pool of transactions. In

the next two lines, node is started using the next thread and the server is created. The accept()
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method waits for the clients. If clients connect with the local node port, it returns an instance of

Socket. The node can then send the transaction to confirm what is happening by means of the

addTransactionToPool(...) method. Finally, a thread is started that receives a signal about the

activity of all nodes in the BC network.
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Chapter 7

Experiments

This chapter presents the results of the simple experimental evaluation of the developed simulator. The

experiments have been conducted on the workstation with the Intel Core i5 2.7 GHz processor and 8

GB of RAM memory. First, the mechanism of the proposed Stackelberg game is verified. Then, the

tests of the implemented BCSchedCloudSim and comparative simulations are carried out, evaluating

the proposed blockchain scheduler together with some other available schedulers. The chapter ends

with a short summary of the achieved results and the conclusions from the experimental analysis.

7.1. Numerical results of the implemented Stackelberg game

This section presents the numerical results of playing Stackelberg game proposed in Section 6.2.1.

The goal of these experiments is to examine the properties of the proposed game, particularly the

impact of input data on the game result. The analysis of numerical results was conducted under the

following conditions:

– the game involves two players, the leader and the follower,

– makespan M is used as SC,

– each player has scheduling factor SF and proposes his own M , the game is simulated for

different SF (see Section 6.2.1) and M values,

– the leader proposes a schedule and the follower verifies it, the result of the game is its rejec-

tion or not.

Numerical results for the two chosen scenarios are presented below. In the first scenario, scheduling

factors of both players are equal in order to show how the network behaves at the beginning when the

SF values of all nodes are the same or very similar. In the second one, different scheduling factors

and makespans were adopted to illustrate the operation of the BC network, which had been running

for some time, and the SF values are different, depending on the activity of a given node.
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Scenario 1 - scheduling factors of both players are equal

The parameters of the first scenario of the simulation are as follows:

– Mleader - 6100 sec

– SFleader - 100 MFLO

– Mfollower - 6000 sec

– SFfollower - 100 MFLO

As can be already seen, both the leader and follower have the same SF equal to 100 MFLO.

According to Eq. 6.1, scheduling factors are first scaled:

1. max{SFleader, SFfollower} = 100

2. SFleader = 1

SFfollower = 1

According to Eq. 6.2, the utility function for the follower takes the form of:

u(s1, s2,Mleader,Mfollower) = 6100× 1s1 + 6000× 1s2

According to Eq. 6.3, the problem to solve is:
argmax
s1,s2

6100s1 + 6000s2

s1 + s2 = 1

s1, s2 ∈ {0, 1}

⇒


u(s1, s2,Mleader,Mfollower) = 6000

s1 = 1

s2 = 0

The solution indicates that the winner of the game is the leader, which means that his schedule

was approved by the follower. Table 7.1 presents the results of several simulations for different

makespans and the same scheduling factors. As demonstrated above, if the scheduling factors are

the same for both players, any schedule proposed by the leader with a smaller makespan than the

one proposed by follower will be rejected. On the other hand, any schedule with a larger or equal

makespan will be accepted. Consequently, players with equal SF factors have limited confidence in

each other and do not accept schedules being better according to their opponents; they only accept

solutions that are just as good or worse than their algorithm. It is also seen that if SF factors are

equal, their size does not affect their decisions.
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No. SFleader,follower Mleader Mfollower Schedule approved

1. 100 10 6000 7

2. 100 5900 6000 7

3. 100 5999 6000 7

4. 100 6000 6000 3

5. 100 6100 6000 3

6. 300 6100 6000 3

7. 100 6500 6000 3

8. 1000 7000 7000 3

Table 7.1. Stackelberg game results for different M and the same SF

Scenario 2 - different scheduling factors and makespans

The parameters of the second scenario of the simulation are as follows:

– Mleader - 6000 sec

– SFleader - 284 MFLO

– Mfollower - 5700 sec

– SFfollower - 300 MFLO

As we have already seen, both the leader and the follower have different SF and M . According to

Eq. 6.1, scheduling factors are first scaled:

1. max{SFleader, SFfollower} = SFfollower = 300

2. SFleader = SFleader
SFfollower

= 284
300 = 71

75

SFfollower = 1

The utility function for the follower is determined by the Eq. 6.2:

u(s1, s2,Mleader,Mfollower) = 6000× 71
75s1 + 5700× 1s2

According to Eq. 6.3 the problem to solve is:
argmax
s1,s2

5680s1 + 5700s2

s1 + s2 = 1

s1, s2 ∈ {0, 1}

⇒


un(s1, s2,Mleader,Mfollower) = 5700

s1 = 0

s2 = 1
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No. SFleader SFfollower Mleader Mfollower Schedule approved

1. 100 300 6000 5700 7

2. 270 300 6400 5700 3

3. 284 300 6000 5700 7

4. 284 300 6150 5700 3

5. 285 300 6000 5700 3

6. 305 300 5600 5700 7

7. 306 300 5600 5700 3

8. 311 300 5500 5700 3

Table 7.2. Stackelberg game results for different SF and M

The solution indicates that the winner of the game is the follower, which means that it rejects the

schedule proposed by the leader. Table 7.2 presents the results of several simulations for different

scheduling factors and makespans. As can be seen, the comparison between scheduling factors of the

leader and follower indicates the following relation: the lower the scheduling factor of the leader is, the

higher the makespan value of the schedule proposed by the follower must be to compel him to consider

the schedule as correct (see example 2 and 3). On the other hand, the higher the leader’s scheduling

factor is, the lower his schedule makespan can be, which is particularly evident in examples number

6 and 7.

The numerical results presented in this section prove that the higher the scheduling factor of

a given player is, the more trust other players have in it. Players with the same SF have limited

confidence in each other and prefer their own solutions. Thanks to this behaviour, it is certain that the

BC network based on the proposed game operating in accordance with the standards adopted by the

nodes, the prepared schedules are correct and their rejection rate is relatively low.

7.2. Evaluation of the Blockchain Secure Cloud Scheduler Simulator

In this part of the experiments, the proposed BCSchedCloudSim was checked for the correct exe-

cution and verification of operations, such as creating or approving transactions or blocks. The time of

performing individual operations was also examined. The main goal for this simulation was to verify

the blockchain mechanism, assuming that schedules placed in transactions are randomly generated.

Security, correctness and the optimum were not verified. The tests were carried out according to the

following scenario:

1. There are several nodes in the blockchain network that have access to the pool of requests

thrown by task managers.
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Tasks Virtual Machines

No. [wl1, . . . , wln]

in [MFLO]

[sd1, . . . , sdn] [cc1, . . . , ccm]

in [MFLOPS]

[tl1, . . . , tlm]

1. [980, 924,

868, 566, 839]

[0.94, 0.23,

0.56, 0.40, 0.80]

[9.019445,

9.843292,

6.745162,

7.520450,

1.841657]

[0.76, 0.10,

0.93, 0.30, 0.32]

2. [170, 189, 651] [0.21, 0.73, 0.32] [3.4275, 2.346821] 0.88, 0.87]

Table 7.3. The example of characteristics of tasks and virtual machines from the

request

2. One of the nodes is started, which begins the search for the Genesis Block; the Genesis Block

does not yet exist, so it is created and propagated by the node across the network.

3. The remaining nodes in the network are started. One of the BC network nodes retrieves several

entries from the pool of requests and prepares transactions by placing random schedules within

them.

4. After the transactions are ready to send, the initiating node broadcasts them to other nodes that

are responsible for verification.

5. Confirmation nodes receive broadcasted transactions, then generate their own random sched-

ules and compare them with those sent by the initiating node, which results in their rejection or

approval.

6. After obtaining the appropriate number of confirmed transactions, the initiating node creates a

block.

7. A leader is selected from the pool of validators that verifies the proposed block and adds it to

the chain.

Simulation parameters

Tests checking the correct implementation of the BCSchedCloudSim were carried out with the

following parameters:
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• size of the BC network = 16 nodes. This is the maximum that can be achieved with the pa-

rameters of the computer on which the simulator is running, but it is enough to conduct the

experiments effectively and correctly;

• data from the pool of requests is randomly generated, the example of characteristics of tasks

and virtual machines from the request is shown in Table 7.3. In the first point, the workload

is defined for 5 tasks and computing capacity for 5 virtual machines, in the second one, the

workload for 3 tasks and computing capacity for 2 virtual machines was defined. For each task,

security demand is defined, and similarly, trust level for each virtual machine;

• expected security level defined in each request = 0. SL is omitted, because it does not affect

the operation of the simulator;

• minimum number of transaction confirmation (MTC) = 8. It is 50% of nodes of the simulated

BC network, this quantity ensures that the system is secure, the client receives the optimal

schedule and does not have to wait too long to get the result;

• Bwl = 10000 MFLO. At such selected value and workloads of tasks from the requests, about

2− 5 transactions will be placed in the block;

• number of records in the pool of requests = 16. Enough to build at least one block with the

assumed Bwl value and generated workloads presented in Table 7.3;

• time for which TF of validators is determined = 30 days. Limiting the time to 30 days prevents

the problem of network centralization [101];

• each node is running on a different port on the same host; the configuration of nodes is pre-

sented in the Table 7.4. Node is described by the host, port and node numbers to which it has a

connection.

No. Host Port Connections

1. 127.0.0.1 7000 [2, . . . , 16]

. . . . . . . . . . . .

16. 127.0.0.1 7016 [1, . . . , 15]

Table 7.4. Configuration of nodes defined in the simulator

The initial state adopted in the simulation is an empty blockchain. The study was divided into stages

in which individual processes take place.
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Stage 1 - Genesis Block Generation

The first node that is started is node number 1. It begins the search for the Genesis Block in the

database. This block does not yet exist, so it is created according to the statically defined code in the

application. The generated block is shown in the Listing 7.1:

Listing 7.1. Generated Genesis Block Body

1 {

2 "hash": "a02ba163f3a02db22fdd14b310119f1a4c2f9e4a773a573f757904dd5433d4dd",

3 "previousHash": "0",

4 "timeStamp": 1568135430934,

5 "merkleRoot": "9a20c547e80200cdd8c9dfef9fac68d1ae772466cd57900c741fdce04c79bc6b

",

6 "transactions": [

7 {

8 "transactionId": [49],

9 "sender": [in bytes],

10 "recipient": [in bytes],

11 "schedule": {

12 "tasks": [

13 {"id": 1, "workload": 960.0, "securityDemand": 0.21},

14 {"id": 2, "workload": 761.0,"securityDemand": 0.82},

15 {"id": 3, "workload": 990.0, "securityDemand": 0.35},

16 {"id": 4, "workload": 333.0, "securityDemand": 0.64},

17 {"id": 5, "workload": 610.0, "securityDemand": 0.12}

18 ],

19 "machines": [

20 {"id": 1, "computingCapacity": 4.575484, "trustLevel": 0.98,

21 "tasksToExecute": [5,2,1,3]},

22 {"id": 2, "computingCapacity": 5.25538, "trustLevel": 0.04,

23 "tasksToExecute": [4]}

24 ],

25 "makespan": 216.47055215237637,

26 "securityLevel": 0.916549650474798

27 },

28 "r": [in bytes],

29 "s": [in bytes],

30 "v": [28],

31 "outputs": [

32 {"id": [in bytes],"sender": [in bytes], "parentTransactionId": [49],

33 "schedulingFactor": 3654.0, "timestamp": 1568135430934}

34 ],

35 "numberOfVerification": 0

36 },
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37 {"transactionId": [50] ...},

38 {"transactionId": [51] ...},

39 {"transactionId": [52] ...}

40 ]

41 }

The block hash was generated from the word "scheduler" using the SHA-256 hash function. Because

this is the first block in the chain, it has no preceding block and the previous hash value is 0. The block

contains 4 transactions with randomly generated schedules. Based on these transactions, MTRhv was

generated according to the algorithm shown in Fig. 4.5. Private keys of the schedule creators placed in

transactions have been defined in the code, so they are known and can be used in the later tests. PKN,

PKTM and DS are stored using bytes, which greatly facilitates their placement in the blockchain and

transmission between nodes. Due to their length, they are hidden in the presented listing under the

name [in bytes]. The Elliptic Curve Digital Signature Algorithm (ECDSA) [102] was used to generate

the electronic signature, which is saved using three elements: r, s and v. The schedule contains data

about the tasks and machines on which they are to be executed. In this case, makespan was used as

SC, which is also saved in the transaction along with the SL calculated for the prepared schedule.

The key of the sender and the scheduling factor calculated on the basis of the workloads of the

tasks wl(schedule) are saved in the outputs of each transaction. Quick access to this information is

facilitated by calculating SF for individual nodes.

Stage 2 - Creating and confirming transactions

In the first step, node number 1 was started and the Genesis Block was created. Now, the other

nodes are launched. In this simulation, node number 2 is responsible for creating and sending trans-

actions while the role of the other nodes is to verify and confirm them.

Listing 7.2. Log output of the node sending the transaction to other nodes for verification

1 Receiving hb|heartbeat from another peer working on port: 7000

2 Receiving hb|heartbeat from another peer working on port: 7002

3
...

4 Receiving hb|heartbeat from another peer working on port: 7016

5

6 Starting scheduler...

7 Initialising...

8 Simulation completed.

9 Makespan: 216.47055208219845

10

11 Sending transaction to peers for accept...
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12 sending tx|{...}|7000

13 sending tx|{...}|7002

14
...

15 sending tx|{...}|7016

16

17 Transaction was verified.

18 Transaction was verified.

19
...

20 Transaction added to verified pool.

21 Transaction was verified.

22
...

23 Transaction added to verified pool.

24 Transaction was verified.

As seen in the Listing 7.2, node 2 receives signals about the activity of the other nodes in the BC

network. Then starts the process of preparing the schedule, which places in the transaction. In line

number 9, makespan value for the schedule proposed by node 2 is presented. Schedule is generated 16

times, always using the same data, so the node propagates in the network 16 transactions. However,

the prepared schedule is not always the same as before. After sending it waits for responses, in some

cases transactions are rejected and in some cases confirmed. After obtaining confirmations from 8

nodes in the network (MTC = 8), the transaction is added to the pool of verified transactions, from

which it is then added to the block. The next Listing 7.3 describes the process from the perspective of

the other nodes for checking received transactions:

Listing 7.3. Log output of the node receiving the transaction for verification

1 Checking transaction...

2 Starting scheduler...

3 Initialising...

4 Simulation completed.

5 Leader makespan: 188.47838557820745

6 Leader scheduling factor: 3654.0

7 Follower makespan: 216.4705522738141

8 Follower scheduling factor: 3654.0

9 Duration of the Stackelberg game: 332626 [NS].

10 Schedule incorrect, transaction rejected.

11
...

12 Checking transaction...

13 Starting scheduler...

14 Initialising...

15 Simulation completed.

16 Leader makespan: 144.9039913383999
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17 Leader scheduling factor: 3654.0

18 Follower makespan: 188.47838557820745

19 Follower scheduling factor: 3654.0

20 Duration of the Stackelberg game: 310990 [NS].

21 Schedule correct, transaction verified.

Nodes receiving transactions to confirm first prepare a schedule for transmitted data according to

its own algorithm. Then the Stackelberg game described in Section 6.2.1 and verified in Section 7.1

is carried out. The example shows the makespan proposed by node 2 (leader) and its SF, as well

as the makespan calculated for the verification node (follower) schedule and its SF . SF values are

equal, according to the transactions placed in Genesis Block. Transactions with schedules of the same

wl(schedule) value have already been placed there, both for node 2 and other nodes in the network.

This prevents the randomization of SF value which would occur if the node had not added or verified

a transaction before. The duration of the Stackelberg game is presented in line number 20. As can be

seen, depending on the game result, the transaction in some cases is rejected and in some - accepted.

Stage 3 - Block mining

After obtaining the appropriate value of Bwl (10000), the process of block mining begins. Four

transactions are added to the block, each of them confirmed by at least 8 nodes. After obtaining the

appropriate value of Bwl, according to Eq. 6.5, a leader is selected from validators. Lt is chosen on

the basis of TF determined for the last 30 days. In the described case, the leader was the node whose

TFt was equal to 18270 MFLO. Log output from the validator is shown in Listing 7.4.

Listing 7.4. Log output of block validator

1 Transaction successfully added to the block.

2 Transaction successfully added to the block.

3
...

4 Transaction successfully added to the block.

5

6 Number of transactions in block: 4

7 Validator trust factor: 18270.0

8 Block mined!!! : 677036ac572566376a389166c8f68858da97b729db4ba2c366a764f5f820d259

At the end of the log output, there is information that the block has been correctly added to the

blockchain, along with its hash. Subsequently, this block has been propagated in the network to update

local databases of other nodes in the BC network.

The three-step process described above, leading from the creation of the Genesis Block, through

the creation and confirmation of transactions, to the final addition of the second block, confirms the
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correct operation of the simulator. The transaction verification process was carried out in accordance

with the assumptions of the network consensus algorithm described in Section 6.2. Sixteen trans-

actions were propagated in the network, and all were correctly read by nodes. BCSchedCloudSim

has been tested for 16 simultaneously running nodes, which confirms the reliability of the presented

results. The nodes correctly exchanged information between each other and verified the schedules

according to the proposed Stackelberg game. Duration of the game was also measured; the results are

shown in Fig. 7.1. The time for solving the optimization problem described in Eq. 6.3 was measured,
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Fig. 7.1. Time of solving the optimization problem using the simplex method dur-

ing transaction verification

not the entire transaction verification time, which depends on the time of the schedule preparation.

The values range from 300000 to 550000 nanoseconds, so the solver used in the implementation

works quickly enough not to delay the entire process. The presented results confirm the correctness

of the simulator implementation, which was used to conduct experiments comparing the proposed

solution with the existing ones described in the next section.
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7.3. Evaluation of the proposed Blockchain Scheduler in comparison
with the existing scheduling modules

This part of the experiment presents some comparisons of the proposed (BS) with other existing

modules dedicated to task scheduling in computational clouds. Tests were carried out using a simu-

lator evaluated in the previous section, and their goal was to check whether in optimal conditions the

proposed solution worked better than other similar solutions. For the purpose of experiments, four

different algorithms for task scheduling were implemented in the simulator. These were:

• First Come First Served (FCFS) [86];

• Shortest Job First (SJF) [87];

• Round Robin (RR) [103];

• Hybrid Heuristic Method based on Genetic Algorithm (HSGA) [104].

The algorithms enumerated above are all used by the existing scheduling modules. They are based on

the implementations available in [105], [106], where CloudSim simulator [107] was used to test the

execution of the prepared schedules.

Simulation scenario

The scenario of the conducted experiments is presented below:

1. The task scheduling process is run on 4 different scheduling modules; each module uses one of

the RR, FCFS, HSGA or SJF algorithms.

2. BS is launched and 16 nodes are defined in the BC network. Each of them uses one of the four

algorithms used by the scheduling modules described in point 1 to prepare the schedule. As a

result, BS saves the best schedule selected by the network in the blockchain.

3. Schedules from points 1 and 2 are carried out for different datasets (different number of tasks

and different number of virtual machines).

4. Each of the prepared schedules is evaluated according to different metrics. Points 1 and 2 are

repeated to evaluate the schedule in terms of the values of makespan, flowtime, economic cost

and resource utilization; the security level of the schedule is not taken into consideration (ex-

pected SL = 0). The value of each criterion is calculated on the basis of the results of schedule

execution using the CloudSim simulator.

5. Points 1 and 2 are repeated for different expected SL, taking into account the makespan as a

schedule evaluation criterion.
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Simulation parameters

In order to conduct the simulation, test datasets were prepared in the form of task and virtual

machines characteristics (workloads and computing capacities) together with the security demand

and trust level parameters. Tasks characteristics ([wl1, . . . , wln], [sd1, . . . , sdn]) and virtual machines

characteristics ([cc1, . . . , ccm], [tl1, . . . , tlm]) were generated according to the Gaussian distribution:

N (µ, σ2) (7.1)

where:

µ – mean

σ2 – variance of random variable

In the literature, there are many cases where test data is generated for several different scenarios (dif-

ferent number of machines and tasks). The number of virtual machines usually ranges between 32 and

256, while the number of tasks from 512 to 4096. Kołodziej [31] provided four different scenarios

where different numbers of tasks and machines were defined and data was generated according to

the normal distribution for machines N (5000, 875) and for tasks N (250000000, 43750000), respec-

tively. The real characteristics of the computational units can be found on the webpages [108], [109],

[110] where different processors are compared. Taking account of the experiments conducted by

Kołodziej, it was decided to generate 2 different datasets of characteristics of virtual machines and 2

different datasets of characteristics of tasks, whose key parameters are presented in Tables 7.5 and 7.6.

Datasets were generated applying the Commons Math library [100] using the NormalDistribution

class.

Dataset 1 Dataset 2

Number of VM 32 128

Distribution of computing capacity (cc) values N (7, 4)

Measure of cc MFLOPS

Minimum value of cc 1

Maximum value of cc 12

Distribution of trust level (tl) N (0.5, 0.04)

Minimum value of tl 0.2

Maximum value of tl 1

Table 7.5. Characteristics of virtual machines
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Dataset 1 Dataset 2

Number of tasks 1024 4096

Distribution of workloads (wl) values N (600, 90000)

Measure of wl MFLO

Minimum value of wl 100

Maximum value of wl 1000

Distribution of security demand (sd) N (0.8, 0.0225)

Minimum value of sd 0.6

Maximum value of sd 0.9

Table 7.6. Characteristics of tasks

Due to the fact that 2 datasets of characteristics of tasks and 2 datasets of characteristics of virtual

machines were generated, each task scheduling process took place on 4 different datasets:

• 32 VM and 1024 tasks;

• 32 VM and 4096 tasks;

• 128 VM and 1024 tasks;

• 128 VM and 4096 tasks.

BCSchedCloudSim parameters were set according to Table 7.7. The tested network consisted of 16

nodes, each tested dataset was thrown as a request into the pool of requests 96 times. Because of the

initiating node must obtain confirmation from 8 other nodes to consider the transaction as valid the

parameters were mostly the same as those adopted in the previous section for validation blockchain

network implementation.

Number of records in the pool of requests 96

MTC 8

Bwl 1000000 MFLO

Time for which TF of validators is determined 30 days

Initial value of SF of each node in the BC network 583329 MFLO

Failure coefficient α (see. Eq. 3.3) 2.5

Table 7.7. BCSchedCloudSim configuration

Table 7.8 presents the CloudSim simulator parameters that were adopted during the simulation. One

data centre with many virtual machines is simulated, each with 4096 MB of RAM and 4 cpus.
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1 data center

Size of VM image 10000 MB

Memory of VM 4096 MB

Number of CPUs in VM 4

Table 7.8. CloudSim configuration

Each schedule preparation and calculation metrics by 4 different scheduling modules based on the

schedule execution in the CloudSim simulator was repeated 48 times. Then, the obtained results were

compared with those returned by BS, where 96 requests with the same data were placed.

Evaluation of the Secure Blockchain Scheduler based on various
scheduling criteria

According to the previously presented scenario, several experiments were carried out to assess the

proposed solution. The parameters for each experiment presented in this section are in Table 7.9. As

can be seen in this part of experiments, the security level criterion was omitted and will be considered

in the next section. First, the impact of the applied solution on the obtained results was examined using

makespan as a criterion for schedule evaluation. The algorithm for calculating the value of makespan

was presented in Eq. 1.1. The results of the Exp. 1 are shown in Fig 7.2. The shorter the time necessary

to execute the entire schedule, the better the schedule was. As demonstrated in the obtained results,

in most cases the best result was achieved by BS. In three cases, the best makespan was returned. In

one case, the returned makespan was not the best but it is not the worst either. Discrepancy between

the minimum and maximum values returned by the scheduler is the smallest in the case of BS, which

confirms the stability of its operation.

No. SC Expected SL Size of the BC network

Exp. 1 makespan 0 16 nodes

Exp. 2 flowtime 0 16 nodes

Exp. 3 economic cost 0 16 nodes

Exp. 4 resource utilization 0 16 nodes

Table 7.9. Experiments outline - various scheduling criteria

In the next experiment (Exp. 2), flowtime was adopted as the criterion for assessing the schedule.

The method of calculating flowtime was described in Eq. 1.2. The lower the flowtime, the lower the

average response time of the entire schedule is. Therefore, the lower the flowtime value, the better

the schedule must be. The results presented in Fig. 7.3 show that the HSGA and BS modules perform
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B

lockchain-based
task

scheduling
in

com
putationalclouds



7.3.E
valuation

ofthe
proposed

B
lockchain

Schedulerin
com

parison
w

ith
the

existing
scheduling

m
odules

83

 

Re
so

ur
ce

 U
til

iza
tio

n

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

32 VM and 1024 tasks

FCFS HSGA RR SJF BS

Re
so

ur
ce

 U
til

iza
tio

n

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

128 VM and 1024 tasks

FCFS HSGA RR SJF BS

Re
so

ur
ce

 U
til

iza
tio

n

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

32 VM and 4096 tasks

FCFS HSGA RR SJF BS

Re
so

ur
ce

 U
til

iza
tio

n

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

128 VM and 4096 tasks

FCFS HSGA RR SJF BS

Fig. 7.5. Exp. 4 - evaluation of the model performance using resource utilization

A
.W

ilczyński
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best with fewer machines and tasks. However, as the number of tasks and virtual machines increases,

HSGA module returns worse and worse results, which is not the case with BS. With larger numbers

of virtual machines and tasks, BS is still the leader and provides the best results.

In Exp. 3 the economic cost criterion was focused on in schedule evaluation. The algorithm of

calculating economic cost is shown in Eq. 1.3. To calculate its value, it was assumed that the cost

of 1 second of resource utilization Ci is equal to $0.0000142, this cost was estimated based on the

prices presented on the AWS website [111]. It was also assumed that the cost of using each virtual

machine is the same. Accordingly, the less a customer has to pay for the schedule, the better the

schedule is. The results of this simulation are presented in Fig 7.4. It can be seen that the costs of

executing simulated schedules are between $0.10 and $1.5. Considering this criterion, each scheduler

returned similar results. Only the schedule returned by HSGA for more virtual machines and tasks

proved more expensive. However, in three cases BS returned the most favourable result. Only in one

case, FCFS was better.

In the last experiment (Exp. 4), resource utilization by the schedule was assessed. The method

of its calculation is presented in Eq 1.4. This measure is important from the providers’ point of view

since the better utilization of resources and reduction of time gaps enables them to gain greater profits.

Therefore, the higher the value of resource utilization, the better the schedule is. The results presented

in Fig. 7.5 show that differences in the resource utilization of prepared schedules are not large, while

the discrepancy in the returned minimum and maximum results is quite large. This time BS was the

best in two cases, whereas the SJF module also brought satisfactory solutions.

To determine the significance of the obtained results , the two-tailed Wilcoxon signed-ranks test

[112] for paired samples was also conducted as part of experiments. The test was carried out for

Exp. 1, where makespan was used as a SC, which in most papers is considered as the most important

criterion for schedule evaluation. The study was performed by selecting the worst result returned by a

single scheduling module as the first sample and the result returned by BS as the second sample. The

following null hypothesis was adopted:

Null Hypothesis 1. H0: any differences between the worst makespan returned by single scheduling

module and the makespan returned by BS are due to chance

The results of the test are shown in Table 7.10.

VM and tasks Makespans with σ W+ W− W Wn

32 VM, 1024 tasks HSGA (341.354) & BS (329.543) 851.5 324.5 324.5 48

32 VM, 4096 tasks RR (747.717) & BS (694.133) 921 255 255 48

128 VM, 1024 tasks HSGA (107.029) & BS (90.764) 1105 71 71 48

128 VM, 4096 tasks HSGA (376.586) & BS (139.968) 1164 12 12 48

Table 7.10. Two-tailed Wilcoxon signed-ranks test for Exp. 1
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where:

W+ – positive sum of test

W− – negative sum of test variable

W – Test statistic

Wn – number of samples where difference was not equal to 0 variable

The critical value for the W Test statistic from the Wilcoxon signed-ranks table [113] for Wn = 48

and α = .05 is equal to Wcrit = 396, which gives the range [0, 396]. Since W statistic of each

performed test is in the range [0, 396], the Null Hypothesis 1 is rejected, so it can be concluded that

there is a significant difference between makespans obtained from single scheduling module and BS

scheduler.

Evaluation of the Secure Blockchain Scheduler based on the security
level of the schedule

In the previous section, the security level criterion was omitted. In this section, the results of

experiments assessing primarily this aspect are presented. The parameters of each of the experiments

carried out are presented in Tab. 7.11. The SL was calculated on the basis of Eq. 3.4. This equation

No. SC Expected SL Size of the BC network

Exp. 5 and 6 makespan 1.5 16 nodes

Table 7.11. Experiments outline - expected security level equal to 1.5

takes into account three factors: P failure, P fake and P hacking [43].

P failure is calculated based on the prepared schedule according to Eq. 3.3 and determines the

probability of machine failure during task execution due to the high security requirements specified

for this task. This factor is estimated the same for each scheduler used in the experiments.

The value of the next factor P fake arbitrates the probability that the schedulers send a false or

incorrectly prepared schedule. In the experiments carried out for the purposes of this dissertation,

four scheduling modules were used that directly return the results, and a fifth one in which the results

are processed via a BC network. In the case of a single schedule module (FCFS, HSGA, RR and SJF)

whose schedule is not verified by anyone else, it can be assumed that P fake is equal to 0.5. However,
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in the case of BS, where the schedule is checked by other nodes from the network, the value of P fake

is determined by the formula:

P fake = 1− Nc

Nv
(7.2)

where

Nc – number of all confirmations that the schedule is correct obtained by the node from the

verification nodes

Nv – number of all verifications of the schedule regardless of whether the answer was positive

or negative

Assuming that there are 16 nodes in the network and MTC is equal to 8, it can be seen that in the case

of BS this factor assumes a value within the range [0, 0.5], depending on how many requests the node

must send to the network to receive 8 confirmations.

The value of the last factor P hacking indicates the probability of manipulation or modification

of the prepared schedule by unauthorized entities. In the case of a single schedule module (FCFS,

HSGA, RR and SJF), it can be assumed that P hacking is equal to 0.5. For BS, this value depends on

TFt of the attacking node. The higher the TFt the block adding node has, the greater the probability

that it may launch a majority attack [114] to modify parts of the blockchain. The P hacking value in

that case is calculated according to the following formula:

P hacking =

{
0.5 TFt ≥ 1

2BWt

TFt
BWt

TFt <
1
2BWt

(7.3)

where

TFt – the sum of wl(schedule) for all schedules added to the blockchain by attacking node

within a given period of time t (in this simulation t is equal to 30 days)

BWt – described in Section 6.2.1

The Eq. 7.3 shows that P hacking in the case of BS assumes a value within the range [0, 0.5], depending

on how high the attacker’s trust factor is in the moment of adding the block to the blockchain.

Exp. 5 and 6 show how much advantage BS module has over the other scheduling modules when it

comes to the security level criterion. The results of these experiments are presented in Fig. 7.6 and 7.7.

As can be seen, the difference in the number of virtual machines and tasks is not significant because

the results are very similar. However, it is worth noticing that BS has a significant advantage over the

other modules. In the case of BS these are values around 2 while in the case of other schedulers the

values are close to 1.5. In the simulation, the expected SL was set to 1.5 and all schedulers managed

to achieve such a result.
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No. Expected SL Size of the BC network MTC Initial value of BWt Scheduler P failure P fake P hacking Security Level

Exp. 7 1.5 16 8 2333316

FCFS 0.484 0.5 0.5 1.516

HSGA 0.485 0.5 0.5 1.515

RR 0.482 0.5 0.5 1.518

SJF 0.482 0.5 0.5 1.518

BS 0.484 0.1 0.325 2.091

Exp. 8 2 16 8 2333316

FCFS 0.489 0.5 0.5 7

HSGA 0.484 0.5 0.5 7

RR 0.484 0.5 0.5 7

SJF 0.483 0.5 0.5 7

BS 0.488 0.1 0.325 2,087

Exp. 9 2 4 2 2333316 BS 0,483 0 0,45 2,067

Exp. 10 2 8 4 2333316 BS 0,485 0,05 0,4 2,065

Exp. 11 2 12 6 2333316 BS 0,492 0,071 0,325 2,112

Exp. 12 2 16 8 4666632 BS 0,486 0,156 0,174 2,184

Exp. 13 2 16 8 6999948 BS 0,479 0,136 0,119 2,266

Table 7.12. Experiments outline - various SL and BC network configuration
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In the subsequent experiments, simulations of various blockchain network configurations were

carried out to check its impact on BS security level. In each of them, makespan was adopted as a SC

for the schedule verification by the BC network. The number of virtual machines was set to 32 and

the number of tasks to 1024. The results are shown in Tab. 7.12, together with the individual factors

that make up SL. Exp. 7 proves that the security level of the schedule prepared by BS is about 0.5

larger than in other cases. On the other hand, in Exp. 8 the expected value of security level was set

to 2 and no schedulers except BS was able to obtain this value. In the experiments 9, 10 and 11,

the effect of changing the number of nodes and MTC in the BC configuration on the P fake value

was checked. The results demonstrate that the P fake value raises with the number of nodes in the

network, which means that for larger networks there is a higher transaction rejection rate before it

receives the appropriate number of confirmations. The last two experiments, 12 and 13, show the

impact of the chain of blocks size, specifically the BWt value, on the P hacking factor. It turns out that

the more transactions and blocks are in the chain, the lower the P hacking value is, which means that

the security level of schedules grows with the length of blockchain and number of transactions placed

in it. The highest SL achieved value was 2.266, a very good result compared to the 1.518 obtained by

the other modules.

To confirm the significance of the results obtained in this part of experiments, where the security

level of the schedule was taken into consideration, the two-tailed Wilcoxon signed-ranks test for

paired samples was conducted for Exp. 7; it was also carried out for Exp 1. The schedule with the

lowest SL value returned by a single scheduling module was selected as the first sample, and the

schedule returned by BS as the second sample. The following null hypothesis was adopted:

Null Hypothesis 2. H0: any differences between the value of SL of the schedule returned by single

scheduling module and the value SL returned by BS are due to chance

The results of the test are shown in Table 7.13.

VM and tasks SL with σ W+ W− W Wn

32 VM, 1024 tasks SJF (0.001) & BS (0.005) 0 1176 0 48

Table 7.13. Two-tailed Wilcoxon signed-ranks test for Exp. 7

The critical value for the W Test statistic from the Wilcoxon signed-ranks table for Wn = 48 and

α = .05 is equal to Wcrit = 396, which gives the range [0, 396]. Since W statistic of the performed

test is in the range [0, 396], the Null Hypothesis 2 is rejected. Hence, it can be concluded that there is

a significant difference between the value of SL of the schedule returned by single scheduling module

and the value of SL of the schedule returned by BS scheduler.
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7.4. Summary

In the experiments, the proposed Stackelberg game was first tested, according to which the sched-

ules sent between nodes in the BC network were verified. The obtained numerical results confirmed

its compliance with the assumptions described in Section 6.2.1. It has been proven that considering

both the adopted schedule evaluation criterion and the history of a given node and its previous activ-

ities in the network (adding transactions), results in making decision whether the schedule is correct

or not in appropriate cases. If the node is new in the network, it must first earn a proper reputation.

Otherwise, the schedules prepared by it are not taken seriously by other nodes, which ensures a high

level of correctness of schedules and the elimination of false schedules with an underestimated value

of the evaluation criterion.

In the next stage, BCSchedCloudSim was checked, which was implemented to conduct experi-

ments comparing BS with other available scheduling modules. All elements of the blockchain were

described, from the creation of Genesis Block, through transactions up to the final block mining. The

results confirmed the compliance of the simulator with the proposed model for determining consensus

in the BC network. The average time needed to carry out the game was also measured, and the results

confirmed that this was not a system bottleneck. In fact, the time needed to solve the optimization

problem was acceptable and had not a major impact on the speed of receiving the requested schedules

by TMs.

After verification of the proposed game and the prepared simulator, some experiments were car-

ried out to evaluate the performance of the proposed solution with other currently available ones.

Using different schedule evaluation criteria, BS was shown to return the best results in most cases.

Sometimes the obtained results were not the best, but always close to that status. This was due to

the fact that, in the simulated environment, schedules good enough to avoid rejection by the network

appeared faster than the best ones proposed a little later. The larger the network, the more time it takes

to obtain the right amount of transaction confirmations. Hence, the number of such cases is reduced

with the increase of the number of nodes in the network. This indicates that the larger the BC network

is, the better results are returned. Apart from that, security level criterion defined in this dissertation

came under close scrutiny. It included, among others, the assessment of the parameters of machine

security on which tasks are executed and the possibility of falsification of schedules and data ma-

nipulation by unauthorized entities. P failure, P fake and P hacking factors were implemented on the

currently available scheduling modules and the proposed blockchain scheduler. In the experiments,

the value of expected security level, defined as TMs in requests which are then processed by nodes,

was set to 1.5 and then to 2.0. FCFS, HSGA, RR and SJF modules were able to return the schedule

with the appropriate security level only in the first case, when the expected SL was 1.5. The SL value

returned by BS in each experiment was well above the value returned by the competitive modules. Fi-

nally, the influence of the blockchain network configuration, i.e. the size of the BC network and MTC
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on the value of this criterion was verified. It turned out that the P fake factor increased proportionally

to the increment in the number of nodes in the BC network, assuming that the MTC was equal to

50% of the number of nodes. On the other hand, P hacking factor decreased with the growing number

of transactions stored in blocks. Nevertheless, P fake grew slower than P hacking decreased. It can be,

therefore, concluded that there is a positive correlation between the increase of the blockchain and

the increase of the value of the SL.

BS meets the assumptions being a core of this thesis statement. It was particularly evident in

the Wilcoxon tests carried out for the two most important experiments. The role of the proposed

scheduler is to return the correct and very secure schedule; monitoring and execution of the tasks

are not considered. The limitation of the applied solution is that it can be used only in the case of

independent batch static scheduling, which means that the availability of virtual machines cannot

change during the preparation of the schedule. The configuration of virtual machines specified in

the request by the Task Manager must remain unchanged, otherwise, the prepared schedule will be

useless. In the provided model, only the independent tasks are considered, but nothing stands in the

way of expanding it with the additional information on the relationships between tasks and to handle

such cases.
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Chapter 8

Conclusions

This chapter summarizes the dissertation. First, the thesis research hypothesis is verified, then the

final conclusions and future research plans are presented.

8.1. Research hypothesis verification

The main aim of the research presented in this dissertation was to propose and implement a new

method for finding the optimal schedule to execute tasks in distributed computational clouds. The pro-

posed method takes into account performing tasks in accordance with the requirements of end-users;

the attempt to increase the security of the prepared schedules was also made. The research hypothesis

was formulated in Section 1.4. Chapter 2 comprised the research on the current achievements in the

field of task scheduling. The most popular approaches currently existing in the literature were pre-

sented and compared. A discussion was conducted to discover that although task scheduling is not a

new topic, optimization and safety of schedules still need many improvements. In Section 3.3, a new

criterion, i. e. security level of the schedule, had been adopted as necessary to define the problem. In

Section 3.1 the considered problem was formulated and metrics for model evaluation were given. The

most important development in this dissertation is a system model based on blockchain technology.

In order to determine the consensus in the implemented BC network, it was defined the new Proof

of Schedule algorithm based on Stackelberg game. Chapter 6 presented the proposed system model

with details on establishing consensus in the network and adding subsequent blocks. It included also

a description of the implemented Blockchain Secure Cloud Scheduler Simulator, which was used to

conduct the experiments. Chapter 7 contained a description of the conducted experiments and results

of two-tailed Wilcoxon signed-ranks tests, which positively verified the research hypothesis. The use

of the BC technology proved to force competition between different scheduling modules, which led to

the optimal result for the client. In addition, the use of BC network increased the security of the pre-

pared schedule, greatly hindering its falsification or nefarious modification unauthorized entities. The
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experiments carried out in Section 7.3 have confirmed that the proposed Secure Blockchain Scheduler,

in most cases, returns the optimal schedules (taking into account different criteria for evaluation). Op-

timal schedules are usually those meeting the expectations of end-users, who primarily want to bear

the lowest execution costs. However, this is not the only requirement from customers. Sometimes, for

legal reasons, they want their tasks to be executed on machines in a specific geographical location.

It also happens that due to sensitive data they want their tasks to be processed on machines with a

high level of security. In the proposed model, presented in Section 6.1, the Task Manager ensures

that such requirements are taken into account. First, it collects them from users. Then, allocating the

appropriate resources, it describes them and places in the pool of requests together with the tasks,

waiting for preparation of the schedule in accordance with the expected level of security. The SL

of the schedule was checked in subsequent experiments and they proved that the use of blockchain

technology significantly reduced the probability of receiving a false or manipulated schedule.

The conducted research significantly extends the possibilities of using different scheduling mod-

ules by users who need services offered by cloud service providers. There are many service providers

on the market, but the planning algorithms they use are kept secret. The proposed approach allows

them to get benefits from pure preparation of schedules, without disclosing the algorithms used for

this and their execution.

8.2. Critical remarks and future work

The research lasted about 4 years. If the dissertation was written today, slightly different assump-

tions would be made regarding the implementation of the simulator used in the experiment. During

the research period, blockchain technology has significantly developed and many blockchain-based

solutions facilitating system construction entered the market. Perhaps the most promising of them

is Ethereum [49], a platform based on smart contracts [35] for which a dedicated Solidity language

[115] was created. Thus, one thing is sure: the implementation of the algorithms described in this

dissertation would be much simpler and faster with a system using such a platform.

In the dissertation, only scheduling of independent tasks was considered; scheduling of depen-

dent tasks was not discussed. In further research, the proposed model will be expanded to cover this

type of tasks. It will require substantial changes with regard to storing dependencies between tasks

in the chain of blocks and their inclusion by the scheduling modules. In the proposed Stackelberg

game used to establish consensus in the BC network, one metric, usually a makespan, is taken as the

criterion for evaluating the schedule. This game can be extended to take into account several criteria

of schedule evaluation at once, for instance, both makespan and flowtime or makespan and economic

costs. Further research can also pertain to placing tasks that are to be executed in the blockchain, and

not only to their characteristics. This would allow scheduling modules to compete not only in terms
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of preparation of the schedule but also when it comes to the way they provide the results of their

execution. This type of data is sensitive, but blockchain technology provides encryption mechanisms

able to successfully protect it against explicit and unwanted publication.
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[90] Andrzej Wilczyński and Joanna Kołodziej. “Modelling and Simulation of Security-aware

Task Scheduling in Cloud Computing Based on Blockchain Technology”. In: Simulation

Modelling Practice and Theory (2019), p. 102038. ISSN: 1569-190X. DOI: https:// doi.org/

10.1016/ j.simpat.2019.102038.

[91] James E. Reeb and Scott Allen Leavengood. “Using the simplex method to solve linear pro-

gramming maximization problems”. In: 1998.

[92] What are Blockchain Confirmations? https : / / www . ethos . io / what - are - blockchain -

confirmations. Nov. 2019.

[93] 51% Attack. https://www.investopedia.com/ terms/1/51-attack.asp. Oct. 2019.

[94] Daniel Davis Wood. “ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER”. In: 2014.

[95] Tim Lindholm and Frank Yellin. “The Java Virtual Machine Specification”. In: 1996.

[96] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. “Apache Maven”. In: 2010.

[97] Jan Kotek. MapDB Release 2.0. 2016. URL: http:// www.mapdb.org/ down/ mapdb-manual-

20.pdf (visited on 2019-08-20).

[98] Limi Kalita. “Socket Programming”. In: International Journal of Computer Science and In-

formation Technologies 5 (2014), pp. 4802–4807.

[99] Google. Gson. https://github.com/google/gson. 2018.

[100] The Apache Software Foundation. Commons Math: The Apache Commons Mathematics Li-

brary. https://commons.apache.org/proper/commons-math/ . 2016.

[101] Centralization in Proof of Stake. https:// cryptocurrencyhub.io/ centralization- in-proof-of-

stake-96f6605c0c13. Mar. 2018.

[102] Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve Digital Signature

Algorithm (ECDSA)”. In: International Journal of Information Security 1.1 (2001), pp. 36–

63. ISSN: 1615-5262. DOI: 10.1007/s102070100002.

[103] Abhijit A. Rajguru and S. S. Apte. “A Performance Analysis of Task Scheduling Algorithms

using Qualitative Parameters”. In: 2013.

[104] Arash Ghorbannia Delavar and Yalda Aryan. “HSGA: a hybrid heuristic algorithm for work-

flow scheduling in cloud systems”. In: Cluster Computing 17.1 (2014), pp. 129–137. ISSN:

1573-7543. DOI: 10.1007/s10586-013-0275-6.

[105] Michael Fahmy. CloudSim Task Allocation and Scheduling. https : / / github . com /

michaelfahmy/cloudsim-task-scheduling. 2017.
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